All-optical dual module platform for motility-based functional scrutiny of microencapsulated probiotic bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38633099
PubMed Central
PMC11019698
DOI
10.1364/boe.510543
PII: 510543
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Probiotic bacteria are widely used in pharmaceutics to offer health benefits. Microencapsulation is used to deliver probiotics into the human body. Capsules in the stomach have to keep bacteria constrained until release occurs in the intestine. Once outside, bacteria must maintain enough motility to reach the intestine walls. Here, we develop a platform based on two label-free optical modules for rapidly screening and ranking probiotic candidates in the laboratory. Bio-speckle dynamics assay tests the microencapsulation effectiveness by simulating the gastrointestinal transit. Then, a digital holographic microscope 3D-tracks their motility profiles at a single element level to rank the strains.
Zobrazit více v PubMed
Doyon M., Labrecque J., “Functional foods: a conceptual definition,” Br. Food J. 110(11), 1133–1149 (2008).10.1108/00070700810918036 DOI
Hill C., Guarner F., Reid G., et al. , “Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic,” Nat. Rev. Gastroenterol. Hepatol. 11(8), 506–514 (2014).10.1038/nrgastro.2014.66 PubMed DOI
Clavijo V., Vives Flórez M.J., “The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review,” Poultry science 97(3), 1006–1021 (2018).10.3382/ps/pex359 PubMed DOI PMC
Tang C., Kong C., Shan M., et al. , “Protective and ameliorating effects of probiotics against diet-induced obesity: A review,” Food Res. Int. 147, 110490 (2021).10.1016/j.foodres.2021.110490 PubMed DOI
Aguilar-Toalá J., Arioli S., Behare P., et al. , “Postbiotics—When simplification fails to clarify,” Nat. Rev. Gastroenterol. Hepatol. 18(11), 825–826 (2021).10.1038/s41575-021-00521-6 PubMed DOI
Nazzaro F., Orlando P., Fratianni F., et al. , “Microencapsulation in food science and biotechnology,” Curr. Opin. Biotechnol. 23(2), 182–186 (2012).10.1016/j.copbio.2011.10.001 PubMed DOI
Misra S., Pandey P., Mishra H.N., “Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review,” Trends Food Sci. Technol. 109, 340–351 (2021).10.1016/j.tifs.2021.01.039 DOI
Fredua-Agyeman M., Gaisford S., “Comparative survival of commercial probiotic formulations: tests in biorelevant gastric fluids and real-time measurements using microcalorimetry,” Benefic. Microbes 6(1), 141–151 (2015).10.3920/BM2014.0051 PubMed DOI
Vinderola G., Reinheimer J., Salminen S., “The enumeration of probiotic issues: From unavailable standardised culture media to a recommended procedure?” Int. Dairy J. 96, 58–65 (2019).10.1016/j.idairyj.2019.04.010 DOI
Wendel U, “Assessing viability and stress tolerance of probiotics—a review,” Front. Microbiol. 12, 818468 (2022).10.3389/fmicb.2021.818468 PubMed DOI PMC
Postek W., Garstecki P., “Droplet microfluidics for high-throughput analysis of antibiotic susceptibility in bacterial cells and populations,” Acc. Chem. Res. 55(5), 605–615 (2022).10.1021/acs.accounts.1c00729 PubMed DOI PMC
Pebdeni A.B., Roshani A., Mirsadoughi E., et al. , “Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water,” Food Control 135, 108822 (2022).10.1016/j.foodcont.2022.108822 DOI
Nazzaro F., Fratianni F., Raffaele C., et al. , “Fermentative ability of alginate-prebiotic encapsulated Lactobacillus acidophilus and survival under simulated gastrointestinal conditions,” J. Funct. Foods 1(3), 319–323 (2009).10.1016/j.jff.2009.02.001 DOI
Holzapfel W.H., Haberer P., Geisen R., et al. , “Taxonomy and important features of probiotic microorganisms in food and nutrition,” The American journal of clinical nutrition 73(2), 365s–373s (2001).10.1093/ajcn/73.2.365s PubMed DOI
Strokotov D., Yurkin M. A., Gilev K., et al. , “Is there a difference between T-and B-lymphocyte morphology?” J. Biomed. Opt. 14(6), 064036 (2009).10.1117/1.3275471 PubMed DOI
Jo Y., Jung J., Kim M., et al. , “Label-free identification of individual bacteria using Fourier transform light scattering,” Opt. Express 23(12), 15792–15805 (2015).10.1364/OE.23.015792 PubMed DOI
Katz A., Alimova A., Xu Min, et al. , “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).10.1109/JSTQE.2003.811284 DOI
Allier C. P., Hiernard G., Poher V., et al. , “Bacteria detection with thin wetting film lensless imaging,” Biomed. Opt. Express 1(3), 762–770 (2010).10.1364/BOE.1.000762 PubMed DOI PMC
Liu L., Ngadi M., “Hyperspectral imaging for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).10.1016/j.tifs.2007.06.001 DOI
Amaral I. C., Braga R. A., Ramos E. M., et al. , “Application of biospeckle laser technique for determining biological phenomena related to beef aging,” J. Food Eng. 119(1), 135–139 (2013).10.1016/j.jfoodeng.2013.05.015 DOI
Ansari M.Z., Ramírez-Miquet Evelio E., Otero Isabel, et al. , “Real time and online dynamic speckle assessment of growing bacteria using the method of motion history image,” J. Biomed. Opt. 21(6), 066006 (2016).10.1117/1.JBO.21.6.066006 PubMed DOI
Pajuelo M., Baldwin G., Rabal H., et al. , “Bio-speckle assessment of bruising in fruits,” Optics and Lasers in Engineering 40(1-2), 13–24 (2003).10.1016/S0143-8166(02)00063-5 DOI
Yeo CB A., Watson I.A., Wong J.W.M., et al. , “Optical imaging and analysis of speckle patterns from Escherichia coli in disinfectant solution,” The European Conference on Lasers and Electro-Optics, Optica Publishing Group; (1998).
Watson I. A., Des S., Parton R., et al. , “Laser inactivation of surfaces and detection of bacteria,” Particles on surfaces. Detection, Adhesion and Removal 9, 83–94 (2006).
Murialdo S. E., Passoni Lucía I., Guzman Marcelo N., et al. , “Discrimination of motile bacteria from filamentous fungi using dynamic speckle,” J. Biomed. Opt. 17(5), 056011 (2012).10.1117/1.JBO.17.5.056011 PubMed DOI
Yoon J., Lee K., Park Y., “A simple and rapid method for detecting living microorganisms in food using laser speckle decorrelation,” arXiv, (2016).10.48550/arXiv.1603.07343 DOI
Mandracchia B., Palpacuer Julie, Nazzaro Filomena, et al. , “Biospeckle decorrelation quantifies the performance of alginate-encapsulated probiotic bacteria,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2019).10.1109/JSTQE.2018.2836941 DOI
Passoni I., Rabal H., Meschino G., et al. , “Probability mapping images in dynamic speckle classification,” Appl. Opt. 52(4), 726–733 (2013).10.1364/AO.52.000726 PubMed DOI
Memmolo P., Aprea G., Bianco V., et al. , “Differential diagnosis of hereditary anemias from a fraction of blood drop by digital holography and hierarchical machine learning,” Biosens. Bioelectron. 201, 113945 (2022).10.1016/j.bios.2021.113945 PubMed DOI
Yi F., Moon I., Javidi B., “Cell morphology-based classification of red blood cells using holographic imaging informatics,” Biomed. Opt. Express 7(6), 2385–2399 (2016).10.1364/BOE.7.002385 PubMed DOI PMC
Vom Werth K. L., Kemper Björn, Kampmeier S., et al. , “Application of Digital Holographic Microscopy to Analyze Changes in T-Cell Morphology in Response to Bacterial Challenge,” Cells 12(5), 762 (2023).10.3390/cells12050762 PubMed DOI PMC
Pirone D., Montella A., Sirico D. G., et al. , “Label-free liquid biopsy through the identification of tumor cells by machine learning-powered tomographic phase imaging flow cytometry,” Sci. Rep. 13(1), 6042 (2023).10.1038/s41598-023-32110-9 PubMed DOI PMC
Xin L., Xiao W., Che L., et al. , “Label-free assessment of the drug resistance of epithelial ovarian cancer cells in a microfluidic holographic flow cytometer boosted through machine learning,” ACS Omega 6(46), 31046–31057 (2021).10.1021/acsomega.1c04204 PubMed DOI PMC
Su T., Xue L., Ozcan A., “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. 109(40), 16018–16022 (2012).10.1073/pnas.1212506109 PubMed DOI PMC
Dardikman-Yoffe G., Mirsky S. K., Barnea I., et al. , “High-resolution 4-D acquisition of freely swimming human sperm cells without staining,” Sci. Adv. 6(15), eaay7619 (2020).10.1126/sciadv.aay7619 PubMed DOI PMC
Zhang Y., Ceylan Koydemir H., Shimogawa M. M., et al. , “Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning,” Light: Sci. Appl. 7(1), 108 (2018).10.1038/s41377-018-0110-1 PubMed DOI PMC
Sirico D. G., Cavalletti Elena, Miccio L., et al. , “Kinematic analysis and visualization of Tetraselmis microalgae 3D motility by digital holography,” Appl. Opt. 61(5), B331–B338 (2022).10.1364/AO.444976 PubMed DOI
Nayak A. R., Malkiel E., McFarland M. N., et al. , “A review of holography in the aquatic sciences: in situ characterization of particles, plankton, and small scale biophysical interactions,” Front. Mar. Sci. 7, 572147 (2021).10.3389/fmars.2020.572147 DOI
Cheong F. C., Wong C. C., Gao Y., et al. , “Rapid, high-throughput tracking of bacterial motility in 3D via phase-contrast holographic video microscopy,” Biophys. J. 108(5), 1248–1256 (2015).10.1016/j.bpj.2015.01.018 PubMed DOI PMC
Molaei M., Sheng J., “Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Opt. Express 22(26), 32119–32137 (2014).10.1364/OE.22.032119 PubMed DOI PMC
Wang G., Huang G., Gong X., et al. , “Method for 3D tracking behaviors of interplaying bacteria individuals,” Opt. Express 28(19), 28060–28071 (2020).10.1364/OE.401032 PubMed DOI
Bedrossian M., El-Kholy M., Daniel N., et al. , “A machine learning algorithm for identifying and tracking bacteria in three dimensions using Digital Holographic Microscopy,” AIMS Biophys. 5(1), 36–49 (2018).10.3934/biophy.2018.1.36 DOI
Zhao F., Huang Q., Gao W., “Image matching by normalized cross-correlation,” 2006 IEEE international conference on acoustics speech and signal processing proceedings 2, IEEE, (2006).
Pu Y., Meng H., “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29(2), 184–197 (2000).10.1007/s003489900088 DOI
Memmolo P., Distante C., Paturzo M., et al. , “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36(10), 1945–1947 (2011).10.1364/OL.36.001945 PubMed DOI
Hoenes K., Wenzel U., Spellerberg B., et al. , “Photoinactivation sensitivity of Staphylococcus carnosus to visible-light irradiation as a function of wavelength,” Photochem. Photobiol. 96(1), 156–169 (2020).10.1111/php.13168 PubMed DOI
Maclean M., MacGregor S. J., Anderson J. G., et al. , “High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus,” FEMS Microbiol. Lett. 285(2), 227–232 (2008).10.1111/j.1574-6968.2008.01233.x PubMed DOI
Briers D., Duncan D. D., Hirst E., et al. , “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).10.1117/1.JBO.18.6.066018 PubMed DOI
Stern D. M., “In vivo evaluation of microcirculation by coherent light scattering,” Nature 254(5495), 56–58 (1975).10.1038/254056a0 PubMed DOI
Fercher A. F., Briers J. D., “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).10.1016/0030-4018(81)90428-4 DOI
Bonner R., Nossal R., “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981).10.1364/AO.20.002097 PubMed DOI
Senarathna J., Rege A., Li N., et al. , “Laser speckle contrast imaging: theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).10.1109/RBME.2013.2243140 PubMed DOI
Duncan D. D., Kirkpatrick S. J., “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).10.1364/JOSAA.25.002088 PubMed DOI PMC
Memmolo P., Miccio L., Paturzo M., et al. , “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photonics 7(4), 713–755 (2015).10.1364/AOP.7.000713 DOI
Mandracchia B., Bianco V., Wang Z., et al. , “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).10.1039/C7LC00414A PubMed DOI
Mandracchia B., Wang Zhe, Ferraro V., et al. , “Quantitative imaging of the complexity in liquid bubbles’ evolution reveals the dynamics of film retraction,” Light: Sci. Appl. 8(1), 20 (2019).10.1038/s41377-019-0131-4 PubMed DOI PMC
Wang Z., “Speckle decorrelation curves of five bacteria under different conditions,” figshare, 2023, 10.6084/m9.figshare.24803196.v4 DOI
Wang Z., “Holographic 3D tracking for L. acidophilus, L. gasseri, L. casei Shirota, L. plantarum, and 37 5AS,” figshare, 2023, 10.6084/m9.figshare.24800085.v3 DOI