Body mass index is an overlooked confounding factor in existing clustering studies of 3D facial scans of children with autism spectrum disorder
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
134121
Univerzita Karlova v Praze
00064203
Ministerstvo Zdravotnictví Ceské Republiky
LM2018132
Národní Centrum Lékařské Genomiky, Česká Republika
PubMed
38684768
PubMed Central
PMC11059264
DOI
10.1038/s41598-024-60376-0
PII: 10.1038/s41598-024-60376-0
Knihovny.cz E-zdroje
- Klíčová slova
- 3D morphometry, Autism spectrum disorders, Cluster analysis, Facial landmarks,
- MeSH
- dítě MeSH
- index tělesné hmotnosti * MeSH
- lidé MeSH
- mladiství MeSH
- obličej * diagnostické zobrazování MeSH
- poruchy autistického spektra * diagnostické zobrazování MeSH
- předškolní dítě MeSH
- shluková analýza MeSH
- zobrazování trojrozměrné * metody MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cluster analyzes of facial models of autistic patients aim to clarify whether it is possible to diagnose autism on the basis of facial features and further to stratify the autism spectrum disorder. We performed a cluster analysis of sets of 3D scans of ASD patients (116) and controls (157) using Euclidean and geodesic distances in order to recapitulate the published results on the Czech population. In the presented work, we show that the major factor determining the clustering structure and consequently also the correlation of resulting clusters with autism severity degree is body mass index corrected for age (BMIFA). After removing the BMIFA effect from the data in two independent ways, both the cluster structure and autism severity correlations disappeared. Despite the fact that the influence of body mass index (BMI) on facial dimensions was studied many times, this is the first time to our knowledge when BMI was incorporated into the faces clustering study and it thereby casts doubt on previous results. We also performed correlation analysis which showed that the only correction used in the existing clustering studies-dividing the facial distance by the average value within the face-is not eliminating correlation between facial distances and BMIFA within the facial cohort.
Faculty of Science and Engineering Curtin University Perth Australia
PRENET Laboratoře Lékařské Genetiky s r o Pardubice Czech Republic
Zobrazit více v PubMed
Handbook of Autism and Pervasive Developmental Disorders. 2 (Wiley, 1997).
Hrdlička, M. & Komárek, V. Dětský Autismus: Přehled Současných Poznatků. 2 (Portál, 2014).
Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI, Hallmayer JF. Autism genetics: Opportunities and challenges for clinical translation. Nat. Rev. Genet. 2017;18:362–376. doi: 10.1038/nrg.2017.4. PubMed DOI
Lai M-C, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383:896–910. doi: 10.1016/S0140-6736(13)61539-1. PubMed DOI
Wing L, Gould J. Severe impairments of social interaction and associated abnormalities in children: Epidemiology and classification. J. Autism Dev. Disord. 1979;9:11–29. doi: 10.1007/BF01531288. PubMed DOI
Hua R, Wei M, Zhang C. The complex genetics in autism spectrum disorders. Sci. China Life Sci. 2015;58:933–945. doi: 10.1007/s11427-015-4893-5. PubMed DOI
Guo H, Wang T, Huidan W, Long M, Coe BP, Li H, et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol. Autism. 2018 doi: 10.1186/s13229-018-0247-z. PubMed DOI PMC
Bensaid M, Loe-Mie Y, Lepagnol-Bestel A-M, Han W, Santpere G, Klarić T, et al. Multi-hit autism genomic architecture evidenced from consanguineous families with involvement of FEZF2 and mutations in high-risk genes. Neuroscience. 2018 doi: 10.1101/759480. DOI
Centanni TM, Green JR, Iuzzini-Seigel J, Bartlett CW, Hogan TP. Evidence for the multiple hits genetic theory for inherited language impairment: A case study. Front. Genet. 2015;6:272. doi: 10.3389/fgene.2015.00272. PubMed DOI PMC
Miller LE, Dai YG, Fein DA, Robins DL. Characteristics of toddlers with early versus later diagnosis of autism spectrum disorder. Autism. 2021;25:416–428. doi: 10.1177/1362361320959507. PubMed DOI PMC
Borden MC, Ollendick TH. An examination of the validity of social subtypes in autism. J. Autism Dev. Disord. 1994;24:23–37. doi: 10.1007/BF02172210. PubMed DOI
Castelloe P, Dawson G. Subclassification of children with autism and pervasive developmental disorder: A questionnaire based on Wing’s subgrouping scheme. J. Autism Dev. Disord. 1993;23:229–241. doi: 10.1007/BF01046217. PubMed DOI
Eaves LC, Ho HH, Eaves DM. Subtypes of autism by cluster analysis. J. Autism Dev. Disord. 1994;24:3–22. doi: 10.1007/BF02172209. PubMed DOI
O’Brien SK. The validity and reliability of the Wing Subgroups Questionnaire. J. Autism Dev. Disord. 1996;26:321–335. doi: 10.1007/BF02172477. PubMed DOI
Volkmar FR, Cohen DJ, Bregman JD, Hooks MY, Stevenson JM. An examination of social typologies in autism. J. Am. Acad. Child Adolesc. Psychiatry. 1989;28:82–86. doi: 10.1097/00004583-198901000-00015. PubMed DOI
Duffy FH, Als H. Autism, spectrum or clusters? An EEG coherence study. BMC Neurol. 2019;19:27. doi: 10.1186/s12883-019-1254-1. PubMed DOI PMC
Hrdlicka M, Dudova I, Beranova I, Lisy J, Belsan T, Neuwirth J, et al. Subtypes of autism by cluster analysis based on structural MRI data. EuropChild Adolescent Psych. 2005;14:138–144. doi: 10.1007/s00787-005-0453-z. PubMed DOI
Tan DW, Maybery MT, Gilani SZ, Alvares GA, Mian A, Suter D, et al. A broad autism phenotype expressed in facial morphology. Transl. Psychiatry. 2020;10:1–9. doi: 10.1038/s41398-020-0695-z. PubMed DOI PMC
Aldridge K, George ID, Cole KK, Austin JR, Takahashi TN, Duan Y, et al. Facial phenotypes in subgroups of prepubertal boys with autism spectrum disorders are correlated with clinical phenotypes. Mol. Autism. 2011;2:15. doi: 10.1186/2040-2392-2-15. PubMed DOI PMC
Obafemi-Ajayi T, Miles JH, Takahashi TN, Qi W, Aldridge K, Zhang M, et al. Facial structure analysis separates autism spectrum disorders into meaningful clinical subgroups. J. Autism Dev. Disord. 2015;45:1302–1317. doi: 10.1007/s10803-014-2290-8. PubMed DOI
American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 5. UK: American Psychiatric Association; 2013.
Palmer RL, Helmholz P, Baynam G. Cliniface: Phenotypic visualisation and analysis using non-rigid registration of 3D facial images. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2020;XLIII-B2-2020:301–308. doi: 10.5194/isprs-archives-XLIII-B2-2020-301-2020. DOI
3D Systems. Geomagic Wrap 2017. (2017). Available from: https://www.3dsystems.com/
Farkas LG. Anthropometry of the Head and Face. Raven Press; 1994.
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2021). Available from: https://www.R-project.org/
The MathWorks, Inc. Matlab version R2022b. (Natick, 2022). Available from: www.mathworks.com
Peyre, G. Toolbox Fast Marching. MATLAB Central File Exchange; (2023). Available from: https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
Spearman C. The proof and measurement of association between two things. Am. J. Psychol. 1987;100:441–471. doi: 10.2307/1422689. PubMed DOI
Caliński T, Harabasz J. A dendrite method for cluster analysis. Commun. Stat. 1974;3:1–27.
Rosner B. Percentage points for a generalized ESD many-outlier procedure. Technometrics. 1983;25:165–172. doi: 10.1080/00401706.1983.10487848. DOI
Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze. 1936;8:3–62.
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952;47:583–621. doi: 10.1080/01621459.1952.10483441. DOI
Student. The probable error of a mean. Biometrika. 1–25 (1908).
Wilcoxon F. Individual comparisons by ranking methods. Biometr. Bull. 1945;1:80–83. doi: 10.2307/3001968. DOI
Armitage, P., Berry, G. & Matthews, J. N. S. Statistical Methods in Medical Research. 4th edn 760–783 (2008).
Levy SE, Pinto-Martin JA, Bradley CB, Chittams J, Johnson SL, Pandey J, et al. Relationship of weight outcomes, co-occurring conditions, and severity of autism spectrum disorder in the study to explore early development. J. Pediatr. 2019;205:202–209. doi: 10.1016/j.jpeds.2018.09.003. PubMed DOI PMC
Curtin C, Anderson SE, Must A, Bandini L. The prevalence of obesity in children with autism: A secondary data analysis using nationally representative data from the National Survey of Children’s Health. BMC Pediatr. 2010;10:11. doi: 10.1186/1471-2431-10-11. PubMed DOI PMC
Curtin C, Jojic M, Bandini LG. Obesity in children with autism spectrum disorders. Harvard Rev. Psychiatry. 2014;22:93. doi: 10.1097/HRP.0000000000000031. PubMed DOI PMC
Baraskewich J, von Ranson KM, McCrimmon A, McMorris CA. Feeding and eating problems in children and adolescents with autism: A scoping review. Autism. 2021;25:1505–1519. doi: 10.1177/1362361321995631. PubMed DOI PMC
Tan DW, Gilani SZ, Maybery MT, Mian A, Hunt A, Walters M, et al. Hypermasculinised facial morphology in boys and girls with Autism Spectrum Disorder and its association with symptomatology. Sci. Rep. 2017;7:9348. doi: 10.1038/s41598-017-09939-y. PubMed DOI PMC