Spatio-temporal control of asymmetric septum positioning during sporulation in Bacillus subtilis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38705388
PubMed Central
PMC11154705
DOI
10.1016/j.jbc.2024.107339
PII: S0021-9258(24)01840-4
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus, RefZ, SpoIIE, asymmetric cell division, chromosomes, protein-protein interaction, sporulation,
- MeSH
- Bacillus subtilis * metabolismus fyziologie MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- buněčné dělení MeSH
- cytoskeletální proteiny metabolismus genetika MeSH
- spory bakteriální * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- cytoskeletální proteiny MeSH
- spore-specific proteins, Bacillus MeSH Prohlížeč
During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.
Zobrazit více v PubMed
Higgins D., Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 2012;36:131–148. PubMed PMC
Tan I.S., Ramamurthi K.S. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 2014;6:212–225. PubMed PMC
Errington J., Wu L.J. Cell Cycle Machinery in Bacillus subtilis. Subcell Biochem. 2017;84:67–101. PubMed PMC
Bylund J.E., Haines M.A., Piggot P.J., Higgins M.L. Axial filament formation in Bacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase. J. Bacteriol. 1993;175:1886–1890. PubMed PMC
Hilbert D.W., Piggot P.J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 2004;68:234–262. PubMed PMC
Ben-Yehuda S., Fujita M., Liu X.S., Gorbatyuk B., Skoko D., Yan J., et al. Defining a centromere-like element in Bacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA. Mol. Cell. 2005;17:773–782. PubMed
Ben-Yehuda S., Rudner D.Z., Losick R. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science. 2003;299:532–536. PubMed
Wu L.J., Errington J. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol. Microbiol. 2003;49:1463–1475. PubMed
Kloosterman T.G., Lenarcic R., Willis C.R., Roberts D.M., Hamoen L.W., Errington J., et al. Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis. Mol. Microbiol. 2016;101:333–350. PubMed PMC
Ben-Yehuda S., Losick R. Asymmetric cell division in B-subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell. 2002;109:257–266. PubMed
Eichenberger P., Fawcett P., Losick R. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol. Microbiol. 2001;42:1147–1162. PubMed
Pogliano J., Osborne N., Sharp M.D., Mello A. A. De, Perez A., Sun Y.L., et al. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 1999;31:1149–1159. PubMed PMC
Arigoni F., Guérout-Fleury A.M., Barák I., Stragier P. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol. Microbiol. 1999;31:1407–1415. PubMed
Rawlings A.E., Levdikov V.M., Blagova E., Colledge V.L., Mas P.J., Tunaley J., et al. Expression of soluble, active fragments of the morphogenetic protein SpoIIE from Bacillus subtilis using a library-based construct screen. Protein Eng. Des. Sel. 2010;23:817–825. PubMed PMC
Levin P.A., Losick R., Stragier P., Arigoni F. Localization of the sporulation protein SpoIIE in Bacillus subtilis is dependent upon the cell division protein FtsZ. Mol. Microbiol. 1997;25:839–846. PubMed
Barák I., Behari J., Olmedo G., Guzmán P., Brown D.P., Castro E., et al. Structure and function of the Bacillus SpollE protein and its localization to sites of sporulation septum assembly. Mol. Microbiol. 1996;19:1047–1060. PubMed
Feucht A., Magnin T., Yudkin M.D., Errington J. Bifunctional protein requried for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 1996;10:794–803. PubMed
Duncan L., Alper S., Arigoni F., Losick R., Stragier P. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science. 1995;270:641–644. PubMed
Arigoni F., Duncan L., Alper S., Losick R., Stragier P. SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 1996;93:3238–3242. PubMed PMC
Iber D., Clarkson J., Yudkin M.D., Campbell I.D. The mechanism of cell differentiation in Bacillus subtilis. Nature. 2006;441:371–374. PubMed
Bradshaw N., Losick R. Asymmetric division triggers cell-specific gene expression through coupled capture and stabilization of a phosphatase. Elife. 2015;4:1–18. PubMed PMC
Campo N., Marquis K.A., Rudner D.Z. SpoIIQ anchors membrane proteins on both sides of the sporulation septum in Bacillus subtilis. J. Biol. Chem. 2008;283:4975–4982. PubMed
Barák I., Youngman P. SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J. Bacteriol. 1996;178:4984–4989. PubMed PMC
Khanna K., Garrido J.L., Sugie J., Pogliano K., Villa E. Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. Elife. 2021;10:1–24. PubMed PMC
Barák I., Muchová K. The positioning of the asymmetric septum during sporulation in Bacillus subtilis. PLoS One. 2018;13:1–15. PubMed PMC
Barák I., Wilkinson A.J. Division site recognition in Escherichia coli and Bacillus subtilis. FEMS Microbiol. Rev. 2007;31:311–326. PubMed
Eswaramoorthy P., Winter P.W., Wawrzusin P., York A.G., Shroff H., Ramamurthi K.S. Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA. PLoS Genet. 2014;10 PubMed PMC
Cha J.H., Stewart G.C. The divIVA minicell locus of Bacillus subtilis. J. Bacteriol. 1997;179:1671–1683. PubMed PMC
Wagner-Herman J.K., Bernard R., Dunne R., Bisson-Filho A.W., Kumar K., Nguyen T., et al. RefZ facilitates the switch from medial to polar division during spore formation in Bacillus subtilis. J. Bacteriol. 2012;194:4608–4618. PubMed PMC
Miller A.K., Brown E.E., Mercado B.T., Herman J.K. A DNA-binding protein defines the precise region of chromosome capture during Bacillus sporulation. Mol. Microbiol. 2016;99:111–122. PubMed
Karimova G., Pidoux J., Ullmann a, Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U. S. A. 1998;95:5752–5756. PubMed PMC
Muchová K., Chromiková Z., Barák I. Linking the peptidoglycan synthesis protein complex with asymmetric cell division during bacillus subtilis sporulation. Int. J. Mol. Sci. 2020;21:1–13. PubMed PMC
Mehla J., Caufield J.H., Sakhawalkar N., Uetz P. A comparison of two-hybrid approaches for detecting protein–protein interactions. Methods Enzymol. 2017;586:333–358. PubMed PMC
Muchová K., Chromiková Z., Bradshaw N., Wilkinson A.J., Barák I. Morphogenic protein RodZ interacts with sporulation specific SpoIIE in Bacillus subtilis. PLoS One. 2016;11 PubMed PMC
Brown E.E., Miller A.K., Krieger I.V., Otto R.M., Sacchettini J.C., Herman J.K. A DNA-binding protein tunes septum placement during Bacillus subtilis sporulation. J. Bacteriol. 2019;201:1–22. PubMed PMC
Wollman A.J.M., Muchová K., Chromiková Z., Wilkinson A.J., Barák I., Leake M.C. Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis. Comput. Struct. Biotechnol. J. 2020;18:1474–1486. PubMed PMC
Wagner S., Baarst L., Ytterberg A.J., Klussmerer A., Wagner C.S., Nord O., et al. Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell. Proteomics. 2007;6:1527–1550. PubMed
Lopez-Garrido J., Ojkic N., Khanna K., Wagner F.R., Villa E., Endres R.G., et al. Chromosome translocation inflates Bacillus forespores and impacts cellular morphology. Cell. 2018;172:758–770.e14. PubMed PMC
Wu L.J., Errington J. Bacillus subtilis spoIIIE protein required for DNA segregation during asymmetric cell division. Science. 1994;264:572–575. PubMed
Chareyre S., Li X., Anjuwon-Foster B.R., Updegrove T.B., Clifford S., Brogan A.P., et al. Cell division machinery drives cell-specific gene activation during differentiation in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 2024;121:1–11. PubMed PMC
Meeske A.J., Rodrigues C.D.A., Brady J., Lim H.C., Bernhardt T.G., Rudner D.Z. High-throughput genetic screens identify a large and diverse collection of new sporulation genes in Bacillus subtilis. PLoS Biol. 2016;14:1–33. PubMed PMC
Cleverley R.M., Rutter Z.J., Rismondo J., Corona F., Tsui H.C.T., Alatawi F.A., et al. The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes. Nat. Commun. 2019;10:1–17. PubMed PMC
Galperin M.Y., Yutin N., Wolf Y.I., Alvarez R.V., Koonin E.V. Conservation and evolution of the sporulation gene set in diverse members of the firmicutes. J. Bacteriol. 2022;204:1–23. PubMed PMC
Makroczyová J., Jamroškovič J., Krascsenitsová E., Labajová N., Barák I. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis. Microbiologyopen. 2016;5:387–401. PubMed PMC
Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., et al., editors. Current Protocols in Molecular Biology. John Wiley & Sons, Inc.; Hoboken, NJ: 2001.
Harwood C.R. Wiley; Chichester; New York: 1990. Molecular Biological Methods for Bacillus.
Youngman P., Perkins J.B., Losick R. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid. 1984;12:1–9. PubMed
Backman K., Ptashne M., Gilbert W. Construction of plasmids carrying the cI gene of bacteriophage lambda. Proc. Natl. Acad. Sci. U. S. A. 1976;73:4174–4178. PubMed PMC
Lewis P.J., Marston A.L. GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene. 1999;227:101–109. PubMed
Miller J.H. Cold Spring Harbor Laboratory; New York: 1972. Experiments in Molecular Genetics.
Jamroskovic J., Pavlendová N., Muchová K., Wilkinson A.J., Barák I. An oscillating Min system in Bacillus subtilis influences asymmetrical septation during sporulation. Microbiology. 2012;158:1972–1981. PubMed PMC
Ju J., Luo T., Haldenwang W.G. Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis. J. Bacteriol. 1998;180:1673–1681. PubMed PMC
Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. PubMed