Cytogenomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals TCR rearrangements as predictive factors for exceptional prognosis
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
MH CZ DRO 0064165
the Czech Ministry of Health
MH CZ DRO 0064165
the Czech Ministry of Health
MH CZ DRO 0064165
the Czech Ministry of Health
MH CZ DRO 0064165
the Czech Ministry of Health
MH CZ DRO 0064165
the Czech Ministry of Health
PubMed
38783324
PubMed Central
PMC11118568
DOI
10.1186/s13039-024-00682-4
PII: 10.1186/s13039-024-00682-4
Knihovny.cz E-resources
- Keywords
- TCR aberrations, Comprehensive cytogenomic analysis, Pediatric T-ALL, Prognostic factors,
- Publication type
- Journal Article MeSH
BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) represents a rare and clinically and genetically heterogeneous disease that constitutes 10-15% of newly diagnosed pediatric ALL cases. Despite improved outcomes of these children, the survival rate after relapse is extremely poor. Moreover, the survivors must also endure the acute and long-term effects of intensive therapy. Although recent studies have identified a number of recurrent genomic aberrations in pediatric T-ALL, none of the changes is known to have prognostic significance. The aim of our study was to analyze the cytogenomic changes and their various combinations in bone marrow cells of children with T-ALL and to correlate our findings with the clinical features of the subjects and their treatment responses. RESULTS: We performed a retrospective and prospective comprehensive cytogenomic analysis of consecutive cohort of 66 children (46 boys and 20 girls) with T-ALL treated according to BFM-based protocols and centrally investigated cytogenetics and immunophenotypes. Using combinations of cytogenomic methods (conventional cytogenetics, FISH, mFISH/mBAND, arrayCGH/SNP and MLPA), we identified chromosomal aberrations in vast majority of patients (91%). The most frequent findings involved the deletion of CDKN2A/CDKN2B genes (71%), T-cell receptor (TCR) loci translocations (27%), and TLX3 gene rearrangements (23%). All chromosomal changes occurred in various combinations and were rarely found as a single abnormality. Children with aberrations of TCR loci had a significantly better event free (p = 0.0034) and overall survival (p = 0.0074), all these patients are living in the first complete remission. None of the abnormalities was an independent predictor of an increased risk of relapse. CONCLUSIONS: We identified a subgroup of patients with TCR aberrations (both TRA/TRD and TRB), who had an excellent prognosis in our cohort with 5-year EFS and OS of 100%, regardless of the presence of other abnormality or the translocation partner. Our data suggest that escalation of treatment intensity, which may be considered in subsets of T-ALL is not needed for nonHR (non-high risk) patients with TCR aberrations.
See more in PubMed
Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. 2016;2016(1):580–8. doi: 10.1182/asheducation-2016.1.580. PubMed DOI PMC
Chiaretti S, Gianfelici V, O’Brien SM, Mullighan CG. Advances in the Genetics and Therapy of Acute Lymphoblastic Leukemia. Am Soc Clin Oncol Educ Book. 2016;35:e314–22. doi: 10.1200/EDBK_156628. PubMed DOI
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23. doi: 10.1182/blood-2016-10-706465. PubMed DOI PMC
Hefazi M, Litzow MR. Recent advances in the Biology and Treatment of T Cell Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep. 2018;13(4):265–74. doi: 10.1007/s11899-018-0455-9. PubMed DOI
Van Vlierberghe P, Pieters R, Beverloo HB, Meijerink JP. Molecular-genetic insights in paediatric T-cell acute lymphoblastic leukaemia. Br J Haematol. 2008;143(2):153–68. doi: 10.1111/j.1365-2141.2008.07314.x. PubMed DOI
Teachey DT, O’Connor D. How I treat newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma in children. Blood. 2020;135(3):159–66. doi: 10.1182/blood.2019001557. PubMed DOI PMC
Lejman M, Włodarczyk M, Styka B, et al. Advantages and limitations of SNP array in the Molecular characterization of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front Oncol. 2020;10:1184. doi: 10.3389/fonc.2020.01184. PubMed DOI PMC
Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-Lineage Acute Lymphoblastic Leukemia: results from the children’s Oncology Group AALL0434 methotrexate randomization [published correction appears in J Clin Oncol. 2019;37(9):761]. J Clin Oncol. 2018;36(29):2926–34. PubMed PMC
Pui CH, Pei D, Cheng C, et al. Treatment response and outcome of children with T-cell acute lymphoblastic leukemia expressing the gamma-delta T-cell receptor. Oncoimmunology. 2019;8(8):1599637. doi: 10.1080/2162402X.2019.1599637. PubMed DOI PMC
Eckert C, Parker C, Moorman AV, et al. Risk factors and outcomes in children with high-risk B-cell precursor and T-cell relapsed acute lymphoblastic leukaemia: combined analysis of ALLR3 and ALL-REZ BFM 2002 clinical trials. Eur J Cancer. 2021;151:175–89. doi: 10.1016/j.ejca.2021.03.034. PubMed DOI
Hunger SP, Raetz EA. How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood. 2020;136(16):1803–12. doi: 10.1182/blood.2019004043. PubMed DOI
Schwab C, Harrison CJ. Advances in B-cell precursor Acute Lymphoblastic Leukemia Genomics. Hemasphere. 2018;2(4):e53. doi: 10.1097/HS9.0000000000000053. PubMed DOI PMC
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive Overview of Gene rearrangements in childhood T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci. 2021;22(2):808. doi: 10.3390/ijms22020808. PubMed DOI PMC
Olshanskaya Y, Kazakova A, Tsaur G, et al. Clinical significance of cytogenetic changes in childhood T-cell acute lymphoblastic leukemia: results of the multicenter group Moscow-Berlin (MB) Leuk Lymphoma. 2019;60(2):426–32. doi: 10.1080/10428194.2018.1485904. PubMed DOI
Burns MA, Place AE, Stevenson KE, et al. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: results from DFCI ALL Consortium protocols 05 – 001 and 11 – 001 [published correction appears in Pediatr Blood Cancer. 2021;68(3):e28885]. Pediatr Blood Cancer. 2021;68(1):e28719. PubMed PMC
Teachey DT, Pui CH. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol. 2019;20(3):e142–54. doi: 10.1016/S1470-2045(19)30031-2. PubMed DOI PMC
Liu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211–8. doi: 10.1038/ng.3909. PubMed DOI PMC
Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118(8):2077–84. doi: 10.1182/blood-2011-03-338707. PubMed DOI
Karrman K, Johansson B. Pediatric T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2017;56(2):89–116. doi: 10.1002/gcc.22416. PubMed DOI
Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL) Leukemia. 1995;9(10):1783–6. PubMed
McGowan-Jordan J, Hastings RJ, Moore S, editors. ISCN 2020: an International System for Human Cytogenomic nomenclature. Basel: Karger; 2020. PubMed
Peterson JF, Pitel BA, Smoley SA, et al. Detection of a cryptic NUP214/ABL1 gene fusion by mate-pair sequencing (MPseq) in a newly diagnosed case of pediatric T-lymphoblastic leukemia. Cold Spring Harb Mol Case Stud. 2019;5(2):a003533. doi: 10.1101/mcs.a003533. PubMed DOI PMC
Taylor J, Xiao W, Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood. 2017;130(4):410–23. doi: 10.1182/blood-2017-02-734541. PubMed DOI PMC
Karrman K, Forestier E, Heyman M, et al. Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome. Genes Chromosomes Cancer. 2009;48(9):795–805. doi: 10.1002/gcc.20684. PubMed DOI
Patrick K, Vora A. Update on biology and treatment of T-cell acute lymphoblastic leukaemia. Curr Opin Pediatr. 2015;27(1):44–9. doi: 10.1097/MOP.0000000000000171. PubMed DOI
Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16(8):494–507. doi: 10.1038/nrc.2016.63. PubMed DOI
Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20(9):1496–510. doi: 10.1038/sj.leu.2404302. PubMed DOI
Cauwelier B, Cavé H, Gervais C, et al. Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRbeta-HOXA rearrangement: a study of the Groupe Francophone De Cytogénétique Hématologique. Leukemia. 2007;21(1):121–8. doi: 10.1038/sj.leu.2404410. PubMed DOI
Szczepański T, Harrison CJ, van Dongen JJ. Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol. 2010;11(9):880–9. doi: 10.1016/S1470-2045(09)70369-9. PubMed DOI
Cavé H, Suciu S, Preudhomme C, et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood. 2004;103(2):442–50. doi: 10.1182/blood-2003-05-1495. PubMed DOI
Bergeron J, Clappier E, Radford I, et al. Prognostic and oncogenic relevance of TLX1/HOX11 expression level in T-ALLs. Blood. 2007;110(7):2324–30. doi: 10.1182/blood-2007-04-079988. PubMed DOI
van Grotel M, Meijerink JP, Beverloo HB, et al. The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica. 2006;91(9):1212–21. PubMed
Van Vlierberghe P, Homminga I, Zuurbier L, et al. Cooperative genetic defects in TLX3 rearranged pediatric T-ALL. Leukemia. 2008;22(4):762–70. doi: 10.1038/sj.leu.2405082. PubMed DOI
Meijerink JP, den Boer ML, Pieters R. New genetic abnormalities and treatment response in acute lymphoblastic leukemia. Semin Hematol. 2009;46(1):16–23. doi: 10.1053/j.seminhematol.2008.09.006. PubMed DOI
Bernard OA, Busson-LeConiat M, Ballerini P, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia. 2001;15(10):1495–504. doi: 10.1038/sj.leu.2402249. PubMed DOI
Hansen-Hagge TE, Schäfer M, Kiyoi H, et al. Disruption of the RanBP17/Hox11L2 region by recombination with the TCRdelta locus in acute lymphoblastic leukemias with t(5;14)(q34;q11) Leukemia. 2002;16(11):2205–12. doi: 10.1038/sj.leu.2402671. PubMed DOI
Ballerini P, Landman-Parker J, Cayuela JM, et al. Impact of genotype on survival of children with T-cell acute lymphoblastic leukemia treated according to the French protocol FRALLE-93: the effect of TLX3/HOX11L2 gene expression on outcome. Haematologica. 2008;93(11):1658–65. doi: 10.3324/haematol.13291. PubMed DOI
Attarbaschi A, Pisecker M, Inthal A, et al. Prognostic relevance of TLX3 (HOX11L2) expression in childhood T-cell acute lymphoblastic leukaemia treated with Berlin-Frankfurt-Münster (BFM) protocols containing early and late re-intensification elements. Br J Haematol. 2010;148(2):293–300. doi: 10.1111/j.1365-2141.2009.07944.x. PubMed DOI
Richter-Pechańska P, Kunz JB, Hof J, et al. Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J. 2017;7(2):e523. doi: 10.1038/bcj.2017.3. PubMed DOI PMC
La Starza R, Pierini V, Pierini T, et al. Design of a comprehensive fluorescence in situ hybridization assay for genetic classification of T-Cell Acute Lymphoblastic Leukemia. J Mol Diagn. 2020;22(5):629–39. doi: 10.1016/j.jmoldx.2020.02.004. PubMed DOI
Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 1996;56(4):722–7. PubMed
Agarwal M, Bakhshi S, Dwivedi SN, Kabra M, Shukla R, Seth R. Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65(6):e27001. doi: 10.1002/pbc.27001. PubMed DOI
Karrman K, Castor A, Behrendtz M, et al. Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A. J Hematol Oncol. 2015;8:42. doi: 10.1186/s13045-015-0138-0. PubMed DOI PMC
Genescà E, Lazarenkov A, Morgades M, et al. Frequency and clinical impact of CDKN2A/ARF/CDKN2B gene deletions as assessed by in-depth genetic analyses in adult T cell acute lymphoblastic leukemia. J Hematol Oncol. 2018;11(1):96. doi: 10.1186/s13045-018-0639-8. PubMed DOI PMC
Graux C, Stevens-Kroef M, Lafage M, et al. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(1):125–33. doi: 10.1038/leu.2008.278. PubMed DOI
Jung M, Schieck M, Hofmann W, et al. Frequency and prognostic impact of PAX5 p.P80R in pediatric acute lymphoblastic leukemia patients treated on an AIEOP-BFM acute lymphoblastic leukemia protocol. Genes Chromosomes Cancer. 2020;59(11):667–71. doi: 10.1002/gcc.22882. PubMed DOI PMC
Fogelstrand L, Staffas A, Wasslavik C, et al. Prognostic implications of mutations in NOTCH1 and FBXW7 in childhood T-ALL treated according to NOPHO ALL-1992 and ALL-2000 protocols. Pediatr Blood Cancer. 2014;61(3):424–30. doi: 10.1002/pbc.24803. PubMed DOI
Paganin M, Grillo MF, Silvestri D, et al. The presence of mutated and deleted PTEN is associated with an increased risk of relapse in childhood T cell acute lymphoblastic leukaemia treated with AIEOP-BFM ALL protocols. Br J Haematol. 2018;182(5):705–11. doi: 10.1111/bjh.15449. PubMed DOI
Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. doi: 10.1016/S1470-2045(08)70339-5. PubMed DOI PMC
Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64. doi: 10.1038/nature05690. PubMed DOI