Characterization of Aspergillus fumigatus secretome during sublethal infection of Galleria mellonella larvae
Language English Country Great Britain, England Media print
Document type Journal Article
PubMed
38836745
PubMed Central
PMC11261830
DOI
10.1099/jmm.0.001844
Knihovny.cz E-resources
- Keywords
- Aspergillus, Galleria mellonella, fungal–host interactions, gliotoxin, proteomics,
- MeSH
- Aspergillus fumigatus * metabolism MeSH
- Aspergillosis microbiology metabolism MeSH
- Virulence Factors metabolism MeSH
- Fungal Proteins * metabolism genetics MeSH
- Hemolymph microbiology metabolism MeSH
- Larva * microbiology MeSH
- Moths * microbiology MeSH
- Proteome analysis MeSH
- Proteomics MeSH
- Secretome metabolism MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Virulence Factors MeSH
- Fungal Proteins * MeSH
- Proteome MeSH
Introduction. The fungal pathogen Aspergillus fumigatus can induce prolonged colonization of the lungs of susceptible patients, resulting in conditions such as allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis.Hypothesis. Analysis of the A. fumigatus secretome released during sub-lethal infection of G. mellonella larvae may give an insight into products released during prolonged human colonisation.Methodology. Galleria mellonella larvae were infected with A. fumigatus, and the metabolism of host carbohydrate and proteins and production of fungal virulence factors were analysed. Label-free qualitative proteomic analysis was performed to identify fungal proteins in larvae at 96 hours post-infection and also to identify changes in the Galleria proteome as a result of infection.Results. Infected larvae demonstrated increasing concentrations of gliotoxin and siderophore and displayed reduced amounts of haemolymph carbohydrate and protein. Fungal proteins (399) were detected by qualitative proteomic analysis in cell-free haemolymph at 96 hours and could be categorized into seven groups, including virulence (n = 25), stress response (n = 34), DNA repair and replication (n = 39), translation (n = 22), metabolism (n = 42), released intracellular (n = 28) and cellular development and cell cycle (n = 53). Analysis of the Gallerial proteome at 96 hours post-infection revealed changes in the abundance of proteins associated with immune function, metabolism, cellular structure, insect development, transcription/translation and detoxification.Conclusion. Characterizing the impact of the fungal secretome on the host may provide an insight into how A. fumigatus damages tissue and suppresses the immune response during long-term pulmonary colonization.
See more in PubMed
Seif M, Kakoschke TK, Ebel F, Bellet MM, Trinks N, et al. CAR T cells targeting Aspergillus fumigatus are effective at treating invasive pulmonary aspergillosis in preclinical models. Sci Transl Med. 2022;14:eabh1209. doi: 10.1126/scitranslmed.abh1209. PubMed DOI
Naaraayan A, Kavian R, Lederman J, Basak P, Jesmajian S. Invasive pulmonary aspergillosis - case report and review of literature. J Community Hosp Intern Med Perspect. 2015;5:26322. doi: 10.3402/jchimp.v5.26322. PubMed DOI PMC
Eraso IC, Sangiovanni S, Morales EI, Fernández-Trujillo L. Use of monoclonal antibodies for allergic bronchopulmonary aspergillosis in patients with asthma and cystic fibrosis: literature review. Ther Adv Respir Dis. 2020;14:1753466620961648. doi: 10.1177/1753466620961648. PubMed DOI PMC
Agarwal R, Muthu V, Sehgal IS, Dhooria S, Prasad KT, et al. Prevalence of Aspergillus sensitization and allergic bronchopulmonary Aspergillosis in adults with bronchial asthma: a systematic review of global data. J Allergy Clin Immunol Pract. 2023;11:1734–1751. doi: 10.1016/j.jaip.2023.04.009. PubMed DOI
Wark P. Pathogenesis of allergic bronchopulmonary aspergillosis and an evidence-based review of azoles in treatment. Respirat Med. 2004;98:915–923. doi: 10.1016/j.rmed.2004.07.002. PubMed DOI
Bongomin F, Otu A, Harris C, Foden P, Kosmidis C, et al. Risk factors for relapse of chronic pulmonary aspergillosis after discontinuation of antifungal therapy. Clin Infect Pract. 2020;5:100015. doi: 10.1016/j.clinpr.2020.100015. DOI
Bongomin F. Post-tuberculosis chronic pulmonary aspergillosis: an emerging public health concern. PLoS Pathog. 2020;16:e1008742. doi: 10.1371/journal.ppat.1008742. PubMed DOI PMC
Fabri JHTM, Rocha MC, Fernandes CM, Persinoti GF, Ries LNA, et al. The heat shock transcription factor HsfA is essential for thermotolerance and regulates cell wall integrity in Aspergillus fumigatus. Front Microbiol. 2021;12:656548. doi: 10.3389/fmicb.2021.656548. PubMed DOI PMC
Aguiar M, Orasch T, Shadkchan Y, Caballero P, Pfister J, et al. Uptake of the siderophore triacetylfusarinine C but not fusarinine C, is crucial for virulence of Aspergillus fumigatus. mBio. 2022;13:e02192-22. doi: 10.1128/mbio.02192-22. PubMed DOI PMC
Schrettl M, Ibrahim-Granet O, Droin S, Huerre M, Latgé J-P, et al. The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes Infect. 2010;12:1035–1041. doi: 10.1016/j.micinf.2010.07.005. PubMed DOI PMC
Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol. 2008;70:27–43. doi: 10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC
König S, Pace S, Pein H, Heinekamp T, Kramer J, et al. Gliotoxin from Aspergillus fumigatus abrogates Leukotriene B4 formation through inhibition of Leukotriene A4 hydrolase. Cell Chem Biol. 2019;26:524–534. doi: 10.1016/j.chembiol.2019.01.001. PubMed DOI
Gayathri L, Akbarsha MA, Ruckmani K. In vitro study on aspects of molecular mechanisms underlying invasive aspergillosis caused by gliotoxin and fumagillin, alone and in combination. Sci Rep. 2020;10:14473. doi: 10.1038/s41598-020-71367-2. PubMed DOI PMC
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev. 2023;47:fuad011. doi: 10.1093/femsre/fuad011. PubMed DOI PMC
Curtis A, Binder U, Kavanagh K. Galleria mellonella larvae as a model for investigating fungal-host interactions. Front Fungal Biol. 2022;3:893494. doi: 10.3389/ffunb.2022.893494. PubMed DOI PMC
Tsai CJ-Y, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7:214–229. doi: 10.1080/21505594.2015.1135289. PubMed DOI PMC
Brennan LE, Kumawat LK, Piatek ME, Kinross AJ, McNaughton DA, et al. Potent antimicrobial effect induced by disruption of chloride homeostasis. Chem. 2023;9:3138–3158. doi: 10.1016/j.chempr.2023.07.014. DOI
Slater JL, Gregson L, Denning DW, Warn PA. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med Mycol. 2011;49:S107–S113. doi: 10.3109/13693786.2010.523852. PubMed DOI
Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603. doi: 10.4161/viru.25906. PubMed DOI PMC
Lin Z, Wang J-L, Cheng Y, Wang J-X, Zou Z. Pattern recognition receptors from lepidopteran insects and their biological functions. Dev Comp Immunol. 2020;108:103688. doi: 10.1016/j.dci.2020.103688. PubMed DOI
Firacative C, Khan A, Duan S, Ferreira-Paim K, Leemon D, et al. Rearing and maintenance of Galleria mellonella and its application to study fungal virulence. J Fungi. 2020;6:130. doi: 10.3390/jof6030130. PubMed DOI PMC
Vertyporokh L, Wojda I. Immune response of Galleria mellonella after injection with non-lethal and lethal dosages of Candida albicans. J Invertebr Pathol. 2020;170:107327. doi: 10.1016/j.jip.2020.107327. PubMed DOI
Sheehan G, Konings M, Lim W, Fahal A, Kavanagh K, et al. Proteomic analysis of the processes leading to Madurella mycetomatis grain formation in Galleria mellonella larvae. PLoS Negl Trop Dis. 2020;14:e0008190. doi: 10.1371/journal.pntd.0008190. PubMed DOI PMC
Durieux M-F, Melloul É, Jemel S, Roisin L, Dardé M-L, et al. Galleria mellonella as a screening tool to study virulence factors of Aspergillus fumigatus. Virulence. 2021;12:818–834. PubMed PMC
Figueiredo-Godoi LMA, Menezes RT, Carvalho JS, Garcia MT, Segundo AG, et al. Exploring the Galleria mellonella model to study antifungal photodynamic therapy. Photodiagnosis Photodyn Ther. 2019;27:66–73. doi: 10.1016/j.pdpdt.2019.05.010. PubMed DOI
Jemel S, Raveloarisaona Y, Bidaud A-L, Djenontin E, Kallel A, et al. In vitro and in vivo evaluation of antifungal combinations against azole-resistant Aspergillus fumigatus isolates. Front Cell Infect Microbiol. 2023;12:1038342. doi: 10.3389/fcimb.2022.1038342. PubMed DOI PMC
Maguire R, Kunc M, Hyrsl P, Kavanagh K. Caffeine administration alters the behaviour and development of Galleria mellonella larvae. Neurotoxicol Teratol. 2017;64:37–44. doi: 10.1016/j.ntt.2017.10.002. PubMed DOI
Risse B, Thomas S, Otto N, Löpmeier T, Valkov D, et al. FIM, a novel FTIR-based imaging method for high throughput locomotion analysis. PLoS One. 2013;8:e53963. doi: 10.1371/journal.pone.0053963. PubMed DOI PMC
Carroll NV, Longley RW, Roe JH. The determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem. 1956;220:583–593. PubMed
Wiśniewski JR. Filter aided sample preparation - a tutorial. Anal Chim Acta. 2019;1090:23–30. doi: 10.1016/j.aca.2019.08.032. PubMed DOI
Davda S, Kowa X-Y, Aziz Z, Ellis S, Cheasty E, et al. The development of pulmonary aspergillosis and its histologic, clinical, and radiologic manifestations. Clin Radiol. 2018;73:913–921. doi: 10.1016/j.crad.2018.06.017. PubMed DOI
Earle K, Valero C, Conn DP, Vere G, Cook PC, et al. Pathogenicity and virulence of Aspergillus fumigatus. Virulence. 2023;14:2172264. doi: 10.1080/21505594.2023.2172264. PubMed DOI PMC
Luo Y, Liu F, Deng L, Xu J, Kong Q, et al. Innate and adaptive immune responses induced by Aspergillus fumigatus Conidia and Hyphae. Curr Microbiol. 2022;80:28. doi: 10.1007/s00284-022-03102-1. PubMed DOI PMC
Chotirmall SH, Al-Alawi M, Mirkovic B, Lavelle G, Logan PM, et al. Aspergillus-associated airway disease, inflammation, and the innate immune response. Biomed Res Int. 2013;2013:723129. doi: 10.1155/2013/723129. PubMed DOI PMC
Renshaw H, Vargas-Muñiz JM, Richards AD, Asfaw YG, Juvvadi PR, et al. Distinct roles of myosins in Aspergillus fumigatus hyphal growth and pathogenesis. Infect Immun. 2016;84:1556–1564. doi: 10.1128/IAI.01190-15. PubMed DOI PMC
de Jesus Carrion S, Abbondante S, Clark HL, Marshall ME, Mouyna I, et al. Aspergillus fumigatus corneal infection is regulated by chitin synthases and by neutrophil-derived acidic mammalian chitinase. Eur J Immunol. 2019;49:918–927. doi: 10.1002/eji.201847851. PubMed DOI PMC
Ma Y, Li R, Wang J, Jiang W, Yuan X, et al. ITIH4, as an inflammation biomarker, mainly increases in bacterial bloodstream infection. Cytokine. 2021;138:155377. doi: 10.1016/j.cyto.2020.155377. PubMed DOI
Lee KH, Ali NF, Lee SH, Zhang Z, Burdick M, et al. Substrate-dependent modulation of the leukotriene A4 hydrolase aminopeptidase activity and effect in A murine model of acute lung inflammation. Sci Rep. 2022;12:9443. doi: 10.1038/s41598-022-13238-6. PubMed DOI PMC
Low CM, Akthar S, Patel DF, Löser S, Wong C-T, et al. The development of novel LTA4H modulators to selectively target LTB4 generation. Sci Rep. 2017;7:44449. doi: 10.1038/srep44449. PubMed DOI PMC
Shukla E, Thorat LJ, Nath BB, Gaikwad SM. Insect trehalase: physiological significance and potential applications. Glycobiology. 2015;25:357–367. doi: 10.1093/glycob/cwu125. PubMed DOI
Hagag S, Kubitschek-Barreira P, Neves GWP, Amar D, Nierman W, et al. Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant. PLoS One. 2012;7:e33604. doi: 10.1371/journal.pone.0033604. PubMed DOI PMC
Sharon H, Hagag S, Osherov N. Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus. Infect Immun. 2009;77:4051–4060. doi: 10.1128/IAI.00426-09. PubMed DOI PMC
Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev. 2011;20:156–174. doi: 10.1183/09059180.00001011. PubMed DOI PMC
Okaa UJ, Bertuzzi M, Fortune-Grant R, Thomson DD, Moyes DL, et al. Aspergillus fumigatus drives tissue damage via iterative assaults upon mucosal integrity and immune homeostasis. Infect Immun. 2023;91:e0033322. doi: 10.1128/iai.00333-22. PubMed DOI PMC
Tanindi A, Cemri M. Troponin elevation in conditions other than acute coronary syndromes. Vasc Health Risk Manag. 2011;7:597–603. doi: 10.2147/VHRM.S24509. PubMed DOI PMC
Singh B, Sharma GL, Oellerich M, Kumar R, Singh S, et al. Novel cytosolic allergens of Aspergillus fumigatus identified from germinating conidia. J Proteome Res. 2010;9:5530–5541. doi: 10.1021/pr100605c. PubMed DOI
Namvar S, Labram B, Rowley J, Herrick S. Aspergillus fumigatus-host interactions mediating airway wall remodelling in asthma. J Fungi. 2022;8:159. doi: 10.3390/jof8020159. PubMed DOI PMC
Choera T, Zelante T, Romani L, Keller NP. A multifaceted role of tryptophan metabolism and indoleamine 2,3-dioxygenase activity in Aspergillus fumigatus-host interactions. Front Immunol. 2017;8:1996. doi: 10.3389/fimmu.2017.01996. PubMed DOI PMC
Maiya S, Grundmann A, Li S-M, Turner G. The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem. 2006;7:1062–1069. doi: 10.1002/cbic.200600003. PubMed DOI
Rocha MC, Fabri JHTM, Silva LP, Angolini CFF, Bertolini MC, et al. Transcriptional control of the production of Aspergillus fumigatus conidia-borne secondary metabolite fumiquinazoline C important for phagocytosis protection. Genetics. 2021;218:iyab036. doi: 10.1093/genetics/iyab036. PubMed DOI PMC
Sasse A, Hamer SN, Amich J, Binder J, Krappmann S. Mutant characterization and in vivo conditional repression identify aromatic amino acid biosynthesis to be essential for Aspergillus fumigatus virulence. Virulence. 2016;7:56–62. doi: 10.1080/21505594.2015.1109766. PubMed DOI PMC
Romani L, Zelante T, De Luca A, Bozza S, Bonifazi P, et al. Indoleamine 2,3-dioxygenase (IDO) in inflammation and allergy to Aspergillus. Med Mycol. 2009;47:S154–S161. doi: 10.1080/13693780802139867. PubMed DOI
Jiang N, Zhang L, Zhao G, Lin J, Wang Q, et al. Indoleamine 2,3-dioxygenase regulates macrophage recruitment, polarization and phagocytosis in Aspergillus fumigatus Keratitis. Invest Ophthalmol Vis Sci. 2020;61:28. doi: 10.1167/iovs.61.8.28. PubMed DOI PMC
Traynor AM, Owens RA, Coughlin CM, Holton MC, Jones GW, et al. At the metal-metabolite interface in Aspergillus fumigatus: towards untangling the intersecting roles of zinc and gliotoxin. Microbiology. 2021;167:001106. doi: 10.1099/mic.0.001106. PubMed DOI PMC
Abad A, Fernández-Molina JV, Bikandi J, Ramírez A, Margareto J, et al. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol. 2010;27:155–182. doi: 10.1016/j.riam.2010.10.003. PubMed DOI
Renwick J, Daly P, Reeves EP, Kavanagh K. Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia. 2006;161:377–384. doi: 10.1007/s11046-006-0021-1. PubMed DOI
Ries LNA, Pardeshi L, Dong Z, Tan K, Steenwyk JL, et al. The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence. PLoS Pathog. 2020;16:e1008645. doi: 10.1371/journal.ppat.1008645. PubMed DOI PMC
Ali EM, Abdallah BM. Effective inhibition of invasive pulmonary Aspergillosis by silver nanoparticles biosynthesized with Artemisia Sieberi leaf extract. Nanomaterials. 2022;12:51. PubMed PMC
Abdallah BM, Ali EM. Therapeutic potential of green synthesized gold nanoparticles using extract of Leptadenia hastata against invasive pulmonary Aspergillosis. J Fungi. 2022;8:442. doi: 10.3390/jof8050442. PubMed DOI PMC
Michels K, Solomon AL, Scindia Y, Sordo Vieira L, Goddard Y, et al. Aspergillus utilizes extracellular heme as an iron source during invasive Pneumonia, driving infection severity. J Infect Dis. 2022;225:1811–1821. doi: 10.1093/infdis/jiac079. PubMed DOI PMC
Hissen AHT, Wan ANC, Warwas ML, Pinto LJ, Moore MM. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect Immun. 2005;73:5493–5503. doi: 10.1128/IAI.73.9.5493-5503.2005. PubMed DOI PMC
Gründlinger M, Gsaller F, Schrettl M, Lindner H, Haas H. Aspergillus fumigatus SidJ mediates intracellular siderophore hydrolysis. Appl Environ Microbiol. 2013;79:7534–7536. doi: 10.1128/AEM.01285-13. PubMed DOI PMC
Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, et al. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 2007;3:1195–1207. doi: 10.1371/journal.ppat.0030128. PubMed DOI PMC
Tsai H-F, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol. 1998;180:3031–3038. doi: 10.1128/JB.180.12.3031-3038.1998. PubMed DOI PMC