• This record comes from PubMed

EUKARYOME: the rRNA gene reference database for identification of all eukaryotes

. 2024 Jun 12 ; 2024 () : .

Language English Country Great Britain, England Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Distinguished Scientist Fellowship Programme King Saud University
MOBERC66 MOBTP198 European Regional Development Fund
LOEWE Zentrum AdRIA
Distinguished Scientist Fellowship Programme King Saud University
MOBERC66 MOBTP198 European Regional Development Fund
LOEWE Zentrum AdRIA

Molecular identification of micro- and macroorganisms based on nuclear markers has revolutionized our understanding of their taxonomy, phylogeny and ecology. Today, research on the diversity of eukaryotes in global ecosystems heavily relies on nuclear ribosomal RNA (rRNA) markers. Here, we present the research community-curated reference database EUKARYOME for nuclear ribosomal 18S rRNA, internal transcribed spacer (ITS) and 28S rRNA markers for all eukaryotes, including metazoans (animals), protists, fungi and plants. It is particularly useful for the identification of arbuscular mycorrhizal fungi as it bridges the four commonly used molecular markers-ITS1, ITS2, 18S V4-V5 and 28S D1-D2 subregions. The key benefits of this database over other annotated reference sequence databases are that it is not restricted to certain taxonomic groups and it includes all rRNA markers. EUKARYOME also offers a number of reference long-read sequences that are derived from (meta)genomic and (meta)barcoding-a unique feature that can be used for taxonomic identification and chimera control of third-generation, long-read, high-throughput sequencing data. Taxonomic assignments of rRNA genes in the database are verified based on phylogenetic approaches. The reference datasets are available in multiple formats from the project homepage, http://www.eukaryome.org.

Department for Biological Sciences Institute for Ecology Evolution and Diversity Goethe University Frankfurt am Main Max von Laue Str 13 Frankfurt am Main 60438 Germany

Department of Biological and Environmental Sciences Gothenburg Global Biodiversity Centre University of Gothenburg Box 461 Göteborg 40530 Sweden

Department of Biology Gangneung Wonju National University Jukheon gil 7 Gangneung 25457 South Korea

Department of Botany Faculty of Science Charles University Benatska 2 Praha 12800 Czech Republic

Department of Ecology Swedish University of Agricultural Sciences Ulls väg 16 Uppsala 75651 Sweden

Department of Environment Soils and Land Use Teagasc Oak Park House Wexford R93 XE12 Ireland

Department of Marine Systems Tallinn University of Technology Mäealuse 14a Tallinn 12618 Estonia

Department of Zoology College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia

Ecology and Genetics Research Unit University of Oulu Box 8000 Oulu 90014 Finland

Eukaryotic Microbiology Faculty of Biology University of Duisburg Essen Universitätsstraße 1 Essen Nordrhein Westfalen 45141 Germany

Institute of Ecology and Earth Sciences University of Tartu Liivi 2 Tartu 50400 Estonia

Institute of Systematics and Evolution of Animals Polish Academy of Sciences Sławkowska 17 Kraków 31016 Poland

Institute of Technology University of Tartu Nooruse 1 Tartu 50400 Estonia

Laboratory of Nematology Wageningen University Droevendaalsesteeg 1 Wageningen 6708PB The Netherlands

Mycology and Microbiology Center University of Tartu Liivi 2 Tartu 50400 Estonia

National Marine Fisheries Research Institute Kołłątaja 1 Gdynia 81332 Poland

Senckenberg Biodiversity and Climate Research Centre Georg Voigt Straße 14 16 Frankfurt am Main 60325 Germany

See more in PubMed

Grene M. and Mendelson E. (2012) Topics in the Philosophy of Biology. Springer, Heidelberg.

Boenigk J., Ereshefsky M., Hoef-Emden K.  et al. (2012) Concepts in protistology: species definitions and boundaries. Eur. J. Protistol., 48, 96–102. PubMed

Taberlet P., Bonin A., Zinger L.  et al. (2018) Environmental DNA: For Biodiversity Research and Monitoring. Oxford University Press, Oxford.

Pawlowski J., Audic S. and Adl S. (2012) CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol., 10, e1001419. PubMed PMC

Jamy M., Foster R., Barbera P.  et al. (2020) Long‐read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol. Ecol. Res., 20, 429–443. PubMed

Karst S.M., Ziels R.M., Kirkegaard R.H.  et al. (2021) High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Meth., 18, 165–169. PubMed

Tedersoo L., Albertsen M., Anslan S.  et al. (2021) Perspectives and benefits of high-throughput long-read sequencing in microbial ecology. Appl. Environ. Microbiol., 87, e00626–21. PubMed PMC

Kadhirvelu B.V., Abarenkov K., Zirk A.  et al. (2022) Enabling community curation of biological source annotations of molecular data through PlutoF and the ELIXIR Contextual Data Clearinghouse. Biodiv. Inform. Sci. Stand., 6, e93595.

Nilsson R.H., Larsson K.H., Taylor A.F.S.  et al. (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res., 47, D259–D264. PubMed PMC

Abarenkov K., Nilsson R.H., Larsson K.H.  et al. (2024) The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res., 52, D791–D797. PubMed PMC

Guillou L., Bachar D., Audic S.  et al. (2012) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res., 41, D597–D604. PubMed PMC

Yilmaz P., Parfrey L.W., Yarza P.  et al. (2014) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res., 42, D643–D648. PubMed PMC

Jamy M., Biwer C., Vaulot D.  et al. (2022) Global patterns and rates of habitat transitions across the eukaryotic tree of life. Nat. Ecol. Evol., 6, 1458–1470. PubMed PMC

Tedersoo L., Anslan S., Bahram M.  et al. (2020) Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fung. Divers., 103, 273–293.

Latz M.A., Grujcic V., Brugel S.  et al. (2022) Short‐and long‐read metabarcoding of the eukaryotic rRNA operon: evaluation of primers and comparison to shotgun metagenomics sequencing. Mol. Ecol. Res., 22, 2304–2318. PubMed

Hanafy R.A., Johnson B., Youssef N.H.  et al. (2020) Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi‐year isolation. Environ. Microbiol., 22, 3883–3908. PubMed

Bengtsson‐Palme J., Ryberg M., Hartmann M.  et al. (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Meth. Ecol. Evol., 4, 914–919.

Edgar R.C., Haas B.J., Clemente J.C.  et al. (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200. PubMed PMC

Katoh K. and Standley D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol., 30, 772–780. PubMed PMC

Larsson A. (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30, 3276–3278. PubMed PMC

Torruella G., De Mendoza A., Grau-Bové X.  et al. (2015) Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Curr. Biol., 25, 2404–2410. PubMed

Galindo L.J., Torruella G., Moreira D.  et al. (2019) Combined cultivation and single-cell approaches to the phylogenomics of nucleariid amoebae, close relatives of fungi. Philos. Trans. R. Soc. B, 374, 20190094. PubMed PMC

Strassert J.F., Jamy M., Mylnikov A.P.  et al. (2019) New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Mol. Biol. Evol., 36, 757–765. PubMed PMC

Labarre A., López-Escardó D., Latorre F.  et al. (2021) Comparative genomics reveals new functional insights in uncultured MAST species. ISME J., 15, 1767–1781. PubMed PMC

Tikhonenkov D.V., Mikhailov K.V., Gawryluk R.M.  et al. (2022) Microbial predators form a new supergroup of eukaryotes. Nature, 612, 714–719. PubMed

Martin M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet, 17, 10–12.

Steenwyk J.L., BuidaT.J.  III, Li Y.  et al. (2020) ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol., 18, e3001007. PubMed PMC

Minh B.Q., Schmidt H.A., Chernomor O.  et al. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol., 37, 1530–1534. PubMed PMC

Schoch C.L., Ciufo S., Domrachev M.  et al. (2020) NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database, 2020, baaa062. PubMed PMC

Ratnasingham S., Hebert P.D. and Fontaneto D. (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS One, 8, e66213. PubMed PMC

Wijayawardene N.N., Hyde K.D., Dai D.Q.  et al. (2022) Outline of fungi and fungus-like taxa—2021. Mycosphere, 13, 53–453.

Tedersoo L. (2017) Proposal for practical multi-kingdom classification of eukaryotes based on monophyly and comparable divergence time criteria. BioRxiv, 2017, 240929.

Burki F., Roger A.J., Brown M.W.  et al. (2020) The new tree of eukaryotes. Trends Ecol. Evol., 35, 43–55. PubMed

Massana R., Del Campo J., Sieracki M.E.  et al. (2014) Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J., 8, 854–866. PubMed PMC

Tedersoo L., Bahram M., Puusepp R.  et al. (2017) Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome, 5, 42. PubMed PMC

Guiry M.D., Guiry G.M., Morrison L.  et al. (2014) AlgaeBase: an on-line resource for algae. Cryptog. Algol., 35, 105–115.

Delavaux C.S., Ramos R.J., Sturmer S.L.  et al. (2022) Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. Mycorrhiza, 32, 145–153. PubMed PMC

Öpik M., Vanatoa A., Vanatoa E.  et al. (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist, 188, 223–241. PubMed

Vetrovsky T., Kolaříková Z., Lepinay C.  et al. (2023) GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high‐throughput sequencing metabarcoding studies. New Phytologist, 240, 2151–2163. PubMed

Abarenkov K., Tedersoo L., Nilsson R.H.  et al. (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol. Bioinform., 6, 189–196.

Tedersoo L., Mikryukov V., Anslan S.  et al. (2021) The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fung. Divers., 111, 573–588.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...