Immune response to cold exposure: Role of γδ T cells and TLR2-mediated inflammation

. 2024 Oct ; 54 (10) : e2350897. [epub] 20240710

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38988146

Grantová podpora
Cooperatio Program from Charles University

The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.

Zobrazit více v PubMed

Chouchani, E. T., Kazak, L. and Spiegelman, B. M., New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. Cell Press; 2019. 29: 27–37.

Yang, F. T. and Stanford, K. I., Batokines: mediators of inter‐tissue communication (a mini‐review). Curr. Obes. Rep. Springer; 2022. 11: 1–9.

Tews, D., Pula, T., Funcke, J. B., Jastroch, M., Keuper, M., Debatin, K. M., Wabitsch, M. et al., Elevated UCP1 levels are sufficient to improve glucose uptake in human white adipocytes. Redox Biol. 2019. 26: 101286.

White, J. D., Dewal, R. S. and Stanford, K. I., The beneficial effects of brown adipose tissue transplantation. Mol. Aspects Med. Elsevier Ltd; 2019. 68: 74–81.

McNeill, B. T., Suchacki, K. J. and Stimson, R. H., Human brown adipose tissue as a therapeutic target: warming up or cooling down? Eur. J. Endocrinol. BioScientifica Ltd.; 2021. 184: R243–R259.

Molofsky, A. B., Nussbaum, J. C., Liang, H. E., Dyken, S. J. V., Cheng, L. E., Mohapatra, A., Chawla, A. et al., Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 2013. 210: 535–549.

Lynch, L., Michelet, X., Zhang, S., Brennan, P. J., Moseman, A., Lester, C., Besra, G. et al., Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T reg cells and macrophages in adipose tissue. Nat Immunol. 2015. 16: 85–95.

Rahman, M. S. and Jun, H., The adipose tissue macrophages central to adaptive thermoregulation. Front. Immunol. Frontiers Media S.A.;13: 2022.

Kohlgruber, A. C., Gal‐Oz, S. T., LaMarche, N. M., Shimazaki, M., Duquette, D., Koay, H. F., Nguyen, H. N. et al., γδ T cells producing interleukin‐17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat Immunol. 2018. 19: 464–474.

Hu, B., Jin, C., Zeng, X., Resch, J. M., Jedrychowski, M. P., Yang, Z., Desai, B. N. et al., γδ T cells and adipocyte IL‐17RC control fat innervation and thermogenesis. Nature. 2020. 578: 610–614.

Ganeshan, K., Nikkanen, J., Man, K., Leong, Y. A., Sogawa, Y., Maschek, J. A., Ry, T. V. et al., Energetic trade‐offs and hypometabolic states promote disease tolerance. Cell. 2019. 177: 399–413.e12.

Spiljar, M., Steinbach, K., Rigo, D., Suárez‐Zamorano, N., Wagner, I., Hadadi, N., Vincenti, I. et al., Cold exposure protects from neuroinflammation through immunologic reprogramming. Cell Metab. 2021. 33: 2231–2246.e8.

do Amaral‐Silva, L., da Silva, W. C., Gargaglioni, L. H. and Bıćego, K. C., Metabolic trade‐offs favor regulated hypothermia and inhibit fever in immune‐challenged chicks. J. Exp. Biol. 2022. 225: jeb243115.

Vargovic, P., Laukova, M., Ukropec, J., Manz, G. and Kvetnansky, R., Prior repeated stress attenuates cold‐induced immunomodulation associated with “browning” in mesenteric fat of rats. Cell Mol. Neurobiol. 2018. 38: 349–361.

Becker, M., Serr, I., Salb, V. K., Ott, V. B., Mengel, L., Blüher, M., Weigmann, B. et al., Short‐term cold exposure supports human Treg induction in vivo. Mol. Metab. 2019. 28: 73–82.

Hu, G. Z., Yang, S. J., Hu, W. X., Wen, Z., He, D., Zeng, L. F., Xiang, Q. et al., Effect of cold stress on immunity in rats. Exp. Ther. Med. 2016. 11: 33–42.

Munro, P., Dufies, O., Rekima, S., Loubat, A., Duranton, C., Boyer, L. and Pisani, D. F., Modulation of the inflammatory response to LPS by the recruitment and activation of brown and brite adipocytes in mice. Am. J. Physiol. Endocrinol. Metab. 2020. 319: E912–E922.

Castellani, J. W. and Young, A. J., Human physiological responses to cold exposure: acute responses and acclimatization to prolonged exposure. Autonomic Neuroscience: Basic and Clinical. Elsevier B.V.; 2016. 196: 63–74.

Flo, T. H., Ø, Halaas, Torp, S., Ryan, L., Lien, E., Dybdahl, B., Sudan, A. et al., Differential expression of Toll‐like receptor 2 in human cells. J. Leukoc. Biol. 2001. 69: 474–481.

Oliveira‐Nascimento, L., Massari, P. and Wetzler, L. M., The role of TLR2 in infection and immunity. Front. Immunol. 2012. 3: 79.

Marvanova, A., Kasik, P., Elsnicova, B., Tibenska, V., Galatik, F., Hornikova, D., Zvolska, V. et al., Continuous short‐term acclimation to moderate cold elicits cardioprotection in rats and alters β‐adrenergic signaling and immune status. Sci. Rep. 2023. 13.

Young, J. B., Saville, E., Rothwell, N. J., Stock, M. J. and Landsberg, L., Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J. Clin. Invest. 1982. 69: 1061–1071.

Fukano, K., Okamatsu‐Ogura, Y., Tsubota, A., Nio‐Kobayashi, J. and Kimura, K., Cold exposure induces proliferation of mature brown adipocyte in a β3‐adrenergic receptor‐mediated pathway. PLoS One. 2016 Nov 1;11: e0166579.

Belay, T., Woart, A. and Graffeo, V., Effect of cold water‐induced stress on immune response, pathology and fertility in mice during Chlamydia muridarum genital infection. Pathog Dis. 2017. 75: 1–13.

Scheele, C. and Wolfrum, C., Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr. Rev. 2020. 41: 53‐65.

Liu, Q., Long, Q., Zhao, J., Wu, W., Lin, Z., Sun, W., Gu, P. et al., Cold‐induced reprogramming of subcutaneous white adipose tissue assessed by single‐cell and single‐nucleus RNA sequencing. Research. 2023. 6: 0182.

Bechara, R., McGeachy, M. J. and Gaffen, S. L., The metabolism‐modulating activity of IL‐17 signaling in health and disease. J. Exp. Med. 2021. 218: e20202191

Papotto, P. H. and Silva‐Santos, B., Got my γδ17 T cells to keep me warm. Nat. Immunol. 2018. 19: 427–429.

Okla, M., Zaher, W., Alfayez, M. and Chung, S., Inhibitory effects of toll‐like receptor 4, NLRP3 inflammasome, and interleukin‐1β on white adipocyte browning. Inflammation. 2018. 41: 626–642.

Okun, E., Griffioen, K. J., Rothman, S., Wan, R., Cong, W. N., De Cabo, R., Montalvo, A. M. et al., Toll‐like receptors 2 and 4 modulate autonomic control of heart rate and energy metabolism. Brain Behav. Immun. 2014. 36: 90–100.

Vijay, K. Toll‐like receptors in immunity and inflammatory diseases: past, present, and future. Int. Immunopharmacol. Elsevier B.V.; 2018. 59: 391–412.

Wesch, D., Peters, C., Oberg, H. H., Pietschmann, K. and Kabelitz, D., Modulation of γδ T cell responses by TLR ligands. Cell Mol Life Sci. 2011. 68: 2357–2370.

Thapa, S. and Cao, X., Nervous regulation: beta‐2‐adrenergic signaling in immune homeostasis, cancer immunotherapy, and autoimmune diseases. Cancer Immunol. Immunother. 2023. 72: 2549–2556.

Guo, J. R., Li, S. Z., Fang, H. G., Zhang, X., Wang, J. F., Guo, S., Hong, JI et al., Different duration of cold stress enhances pro‐inflammatory cytokines profile and alterations of Th1 and Th2 type cytokines secretion in serum of wistar rats. J. Animal Vet. Adv. 2012. 11: 1538–1545.

Liu, X., Li, S., Zhao, N., Xing, L., Gong, R., Li, T., Zhang, S. et al., Effects of acute cold stress after intermittent cold stimulation on immune‐related molecules, intestinal barrier genes, and heat shock proteins in broiler ileum. Animals. 2022. 12: 3260.

Basu, M., Paichha, M., Swain, B., Lenka, S. S., Singh, S., Chakrabarti, R. and Samanta, M., Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla (Catla catla). 3 Biotech. 2015. 5: 1021–1030.

Krueger, M., Costello, J. T., Achtzehn, S., Dittmar, K. H. and Mester, J., Whole‐body cryotherapy (−110 °C) following high‐intensity intermittent exercise does not alter hormonal, inflammatory or muscle damage biomarkers in trained males. Cytokine. 2019. 113: 277–284.

Guo, C., Fan, Y., Kong, X. and Zhao, C., The effect of different water immersion strategies on delayed onset muscle soreness and inflammation in elite race walker. J. Mens. Health. 2022. 18: 1–8.

Gagnon, D. D., Gagnon, S. S., Rintamäki, H., Törmäkangas, T., Puukka, K., Herzig, K. H. and Kyröläinen, H. The effects of cold exposure on leukocytes, hormones and cytokines during acute exercise in humans. PLoS One. 2014. 9: e110774.

Billeter, A. T., Hellmann, J., Roberts, H., Druen, D., Gardner, S. A., Sarojini, H., Galandiuk, S. et al., MicroRNA‐155 potentiates the inflammatory response in hypothermia by suppressing IL‐10 production. FASEB J. 2014. 28: 5322–5336.

Agueda‐Oyarzabal, M. and Emanuelli, B. Immune cells in thermogenic adipose depots: the essential but complex relationship. Front. Endocrinol. 2022. 13: 839360.

Bertola, A., Gallerand, A. and Ivanov, S. Immune cell involvement in brown adipose tissue functions. Discovery Immunol. 2022. 1: kyac007.

Khakh, B. S. and Burnstock, G., The double life of ATP. Sci. Am. 2009. 301: 84–92.

Sumi, Y., Woehrle, T., Chen, Y., Yao, Y., Li, A. and Junger, W. G. Adrenergic receptor activation involves ATP release and feedback through purinergic receptors. Am. J. Physiol. Cell Physiol. 2010. 299: 1118–1126.

Di Virgilio, F. and Vuerich, M. Purinergic signaling in the immune system. Auton. Neurosci. Elsevier B.V.; 2015. 191: 117–123.

Enriquez, T. and Colinet, H. Cold acclimation triggers major transcriptional changes in Drosophila suzukii. BMC Genom. 2019. 20: 413.

Trabanelli, S., Ocadlikova, D., Gulinelli, S., Curti, A., Salvestrini, V., de Paula Vieira, R., Idzko, M. et al., Extracellular ATP exerts opposite effects on activated and regulatory CD4+ T cells via purinergic P2 receptor activation. J. Immunol. 2012. 189: 1303–1310.

Olenchock, B. A., Rathmell, J. C. and Vander Heiden, M. G. Biochemical underpinnings of immune cell metabolic phenotypes. Immunity. 2017. 46: 703–713.

Ribot, J. C., Lopes, N. and Silva‐Santos, B., γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. Nature Research; 2021. 21: 221–232.

Ganor, Y. and Levite, M. The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate‐induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. J. Neural. Transm. 2014. 121: 983–1006.

Qian, J., Galitovskiy, V., Chernyavsky, A. I., Marchenko, S. and Grando, S. A. Plasticity of the murine spleen T‐cell cholinergic receptors and their role in in vitro differentiation of nave CD4 T cells toward the Th1, Th2 and Th17 lineages. Genes Immun. 2011. 12: 222–230.

Thomas, R. and Yang, X. Semaphorins in immune cell function, inflammatory and infectious diseases. Curr. Res. Immunol. 2023. 4: 100060.

Mizuno, Y., Nakanishi, Y. and Kumanogoh, A. Pathophysiological functions of semaphorins in the sympathetic nervous system. Inflamm. Regener. 2023. 43: 30.

Vargovic, P., Manz, G. and Kvetnansky, R. Continuous cold exposure induces an anti‐inflammatory response in mesenteric adipose tissue associated with catecholamine production and thermogenin expression in rats. Endocr. Regul. 2016. 50: 137–144.

Lemieux, P., Roudier, E. and Birot, O. Angiostatic freeze or angiogenic move? Acute cold stress prevents angiokine secretion from murine myotubes but primes primary endothelial cells for greater migratory capacity. Front. Physiol. 2022. 13: 975652.

McFarlin, B. K. and Mitchell, J. B. Exercise in hot and cold environments: differential effects on leukocyte number and NK cell activity. Aviat. Space Environ. Med. 2003. 74: 1231–1236.

Brenner, I. K., Castellani, J. W., Gabaree, C., Young, A. J., Zamecnik, J., Shephard, R. J. and Shek, P. N. Immune changes in humans during cold exposure: effects of prior heating and exercise. J. Appl. Physiol. (1985). 1999. 87: 699–710.

Won, S. J. and Lin, M. T., Thermal stresses reduce natural killer cell cytotoxicity. J Appl Physiol (1985). 1995. 79: 732–737.

Knechtle, B., Waśkiewicz, Z., Sousa, C. V., Hill, L. and Nikolaidis, P. T. Cold water swimming—benefits and risks: a narrative review. Int. J. Environ. Res. Public Health. 2020. 17: 1–20.

Tipton, M. J., Collier, N., Massey, H., Corbett, J. and Harper, M. Cold water immersion: kill or cure? Exp. Physiol. 2017. 102: 1335–1355.

Dugué, B. and Leppänen, E. Adaptation related to cytokines in man: effects of regular swimming in ice‐cold water. Clinical Physiology. 2000. 20: 114–121.

Paleja, B., Anand, A., Chaukar, D., D'Cruz, A. and Chiplunkar, S., Decreased functional response to Toll like receptor ligands in patients with oral cancer. Hum. Immunol. 2013. 74: 927–936.

Tibenska, V., Benesova, A., Vebr, P., Liptakova, A., Hejnova, L., Elsnicová, B., Drahota, Z. et al., Gradual cold acclimation induces cardioprotection without affecting β‐adrenergic receptor‐mediated adenylyl cyclase signaling. J. Appl. Physiol. 2020 Apr 1;128: 1023–1032.

Lømo, T., Eken, T., Bekkestad Rein, E. and Njå, A. Body temperature control in rats by muscle tone during rest or sleep. Acta. Physiologica. 2020. 228: e13348.

Bolger, A. M., Lohse, M. and Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014. 30: 2114–2120.

Kim, D., Langmead, B. and Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015. 12: 357–360.

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O. Whitwham, A. et al., Twelve years of SAMtools and BCFtools. Gigascience. 2021. 10.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G. et al., The sequence alignment/map format and SAMtools. Bioinformatics. 2009. 25: 2078–2079.

Ramírez, F., Ryan, D. P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S. et al., deepTools2: a next generation web server for deep‐sequencing data analysis. Nucleic Acids Res. 2016. 44: W160–W165.

Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G. and Mesirov, J. P. Integrative genomics viewer. Nat. Biotechnol. 2011. 29: 24–26.

Love, M. I., Huber, W. and Anders, S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014. 15: 550.

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B. et al., Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004. 5: R80.

Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C. et al., Orchestrating high‐throughput genomic analysis with bioconductor. Nat. Methods. 2015. 12: 115–121.

Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. and WebGestalt, Zhang B. 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019. 47: W199–W205.

Kleverov, M., Zenkova, D., Kamenev, V., Sablina, M., Artyomov, M. N. and Sergushichev, A. A. Phantasus: web‐application for visual and interactive gene. eLife. 2024. 13: e85722.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...