Curation of historical phenotypic wheat data from the Czech Genebank for research and breeding
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
862613
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
862613
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
862613
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
862613
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
MZE-RO0423
Ministerstvo Zemědělství (Ministry of Agriculture)
PubMed
38992038
PubMed Central
PMC11239927
DOI
10.1038/s41597-024-03598-1
PII: 10.1038/s41597-024-03598-1
Knihovny.cz E-zdroje
- MeSH
- fenotyp * MeSH
- genetická variace MeSH
- genotyp MeSH
- pšenice * genetika MeSH
- šlechtění rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Climate change and population growth are putting increasing pressure on global food security. The development of high-yielding varieties for important crops such as wheat is crucial to meet these challenges. The basis for this is extensive exploitation of beneficial genetic variation resting in genebanks around the world. Selecting suitable donor genotypes from the vast number of wheat accessions stored in genebanks is a difficult task and depends critically on the density of information on the performance of individual accessions. Therefore, this study aimed to access phenotypic data from the Czech genebank, storing over 13,000 wheat accessions. We curated and analyzed data on heading date, plant height, and thousand grain weight for more than one-third of all available accessions regenerated across 70 years. The data underwent analysis using a linear mixed model, revealing high quality of curated data with heritability reaching 99%. The raw data, but also derived data such as the best linear unbiased estimations, are now available for the wheat collection of the Czech genebank for research and breeding.
Zobrazit více v PubMed
Erenstein, O. et al. in Wheat Improvement: Food Security in a Changing Climate (eds M. P., Reynolds & H.-J., Braun) 47–66 (Springer International Publishing, 2022).
Faostat, D. Crops and livestock products. Statistics Division, Food and Agriculture Organization of the United Nations: Rome, Italy (2022).
Velu G, Singh RP, Huerta J, Guzmán C. Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. Field Crops Research. 2017;214:373–377. doi: 10.1016/j.fcr.2017.09.030. PubMed DOI PMC
Eugenio FA, van Milgen J, Duperray J, Sergheraert R, Le Floc’h N. Feeding intact proteins, peptides, or free amino acids to monogastric farm animals. Amino Acids. 2022;54:157–168. doi: 10.1007/s00726-021-03118-0. PubMed DOI
Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology. 2010;101:4744–4753. doi: 10.1016/j.biortech.2009.11.080. PubMed DOI
Tufail T, et al. Wheat straw: A natural remedy against different maladies. Food Science & Nutrition. 2021;9:2335–2344. doi: 10.1002/fsn3.2030. PubMed DOI PMC
Bareš I, Dotlačil L, Stehno Z, Faberová I, Vlasák M. Původní a povolené odrůdy pšenice v Československu v letech 1918-1992. Sbírka VÚRV, Genetické zdroje č. 1995;65:305.
Wilkinson MD, et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC
Meier, U. BBCH-Monograph. Growth Stages of Plants–Entwicklungsstadien von Pflanzen–Estadios de las plantas–Dévelopement des Plantes. Berlin and Wien. (Blackwell Wissenschaftsverlag, 1997).
Asreml: Fits the linear mixed model. R package (Version 4.1. 0.149) (2021).
Holm S. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics. 1979;6:65–70.
Nobre JS, Singer JM. Leverage analysis for linear mixed models. Journal of Applied Statistics. 2011;38:1063–1072. doi: 10.1080/02664761003759016. DOI
Arend D, et al. e!DAL - a framework to store, share and publish research data. BMC Bioinformatics. 2014;15:214. doi: 10.1186/1471-2105-15-214. PubMed DOI PMC
Svobodap P, Holubec V, Reif J, Berkner M. 2024. Historical phenotypic data of spring and winter wheat accessions regenerated in Czech genebank in Prague-Ruzyne since the 1950s. e!DAL - Plant Genomics and Phenomics Research Data Repository (PGP) DOI
Philipp N, et al. Historical phenotypic data from seven decades of seed regeneration in a wheat ex situ collection. Scientific Data. 2019;6:137. doi: 10.1038/s41597-019-0146-y. PubMed DOI PMC
Hinterberger, V., Douchkov, D., Lueck, S., Reif, J. C. & Schulthess, A. W. High-throughput imaging of powdery mildew resistance of the winter wheat collection hosted at the German Federal ex situ Genebank for Agricultural and Horticultural Crops. GigaScience12, 10.1093/gigascience/giad007 (2023). PubMed PMC
Schulthess AW, et al. Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement. Nature Genetics. 2022;54:1544–1552. doi: 10.1038/s41588-022-01189-7. PubMed DOI
Schulthess AW, et al. Large-scale genotyping and phenotyping of a worldwide winter wheat genebank for its use in pre-breeding. Scientific Data. 2022;9:784. doi: 10.1038/s41597-022-01891-5. PubMed DOI PMC
Mascher M, et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nature Genetics. 2019;51:1076–1081. doi: 10.1038/s41588-019-0443-6. PubMed DOI