Synthesis, biological evaluation and metadynamics simulations of novel N-methyl β-sheet breaker peptides as inhibitors of Alzheimer's β-amyloid fibrillogenesis

. 2024 Jul 17 ; 15 (7) : 2286-2299. [epub] 20240411

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39026638

Several scientific evidences report that a central role in the pathogenesis of Alzheimer's disease is played by the deposition of insoluble aggregates of β-amyloid proteins in the brain. Because Aβ is self-assembling, one possible design strategy is to inhibit the aggregation of Aβ peptides using short peptide fragments homologous to the full-length wild-type Aβ protein. In the past years, several studies have reported on the synthesis of some short synthetic peptides called β-sheet breaker peptides (BSBPs). Herein, we present the synthesis of novel (cell-permeable) N-methyl BSBPs, designed based on literature information on the structural key features of BSBPs. Three-dimensional GRID-based pharmacophore peptide screening combined with PT-WTE metadynamics was performed to support the results of the design and microwave-assisted synthesis of peptides 2 and 3 prepared and analyzed for their fibrillogenesis inhibition activity and cytotoxicity. An HR-MS-based cell metabolomic approach highlighted their cell permeability properties.

Zobrazit více v PubMed

Baig M. H. Ahmad K. Rabbani G. Choi I. Front. Aging Neurosci. 2018;10:21. doi: 10.3389/fnagi.2018.00021. doi: 10.3389/fnagi.2018.00021. PubMed DOI PMC

Iizuka T. Shoji M. Kawarabayashi T. Sato M. Kobayashi T. Tada N. Kasai K. Matsubara E. Watanabe M. Tomidokoro Y. Hirai S. Biochem. Biophys. Res. Commun. 1996;218:238–242. doi: 10.1006/bbrc.1996.0042. doi: 10.1006/bbrc.1996.0042. PubMed DOI

Volloch V. Rits S. Med. Sci. 2018;6:45. doi: 10.3390/medsci6020045. PubMed DOI PMC

Acosta D. M. Á. V. Vega B. C. Basurto J. C. Morales L. G. F. Hernández M. C. R. Int. J. Mol. Sci. 2018;19:2415. doi: 10.3390/ijms19082415. doi: 10.3390/ijms19082415. PubMed DOI PMC

Aleksis R. Oleskovs F. Jaudzems K. Pahnke J. Biverstål H. Biochimie. 2017;140:176–192. doi: 10.1016/j.biochi.2017.07.011. doi: 10.1016/j.biochi.2017.07.011. PubMed DOI

Straub J. E. Thirumalai D. Annu. Rev. Phys. Chem. 2011;62:437–463. doi: 10.1146/annurev-physchem-032210-103526. doi: 10.1146/annurev-physchem-032210-103526. PubMed DOI PMC

Benilova I. Karran E. De Strooper B. Nat. Neurosci. 2012;15:349–357. doi: 10.1038/nn.3028. doi: 10.1038/nn.3028. PubMed DOI

Hayden E. Y. Teplow D. B. Alzheimer's Res. Ther. 2013;5:60. doi: 10.1186/alzrt226. doi: 10.1186/alzrt226. PubMed DOI PMC

Butterfield S. M. Lashuel H. A. Angew. Chem., Int. Ed. 2010;49:5628–5654. doi: 10.1002/anie.200906670. doi: 10.1002/anie.200906670. PubMed DOI

Lashuel H. A. Hartley D. Petre B. M. Walz T. Lansbury P. T. Nature. 2002;418:291. doi: 10.1038/418291a. doi: 10.1038/418291a. PubMed DOI

Shankar G. M. Bloodgood B. L. Townsend M. Walsh D. M. Selkoe D. J. Sabatini B. L. J. Neurosci. 2007;27:2866–2875. doi: 10.1523/JNEUROSCI.4970-06.2007. doi: 10.1523/JNEUROSCI.4970-06.2007. PubMed DOI PMC

Kelly B. L. Ferreira A. J. Biol. Chem. 2006;281:28079–28089. doi: 10.1074/jbc.M605081200. doi: 10.1074/jbc.M605081200. PubMed DOI

Snyder E. M. Nong Y. Almeida C. G. Paul S. Moran T. Choi E. Y. Nat. Neurosci. 2005;8:1051–1058. doi: 10.1038/nn1503. doi: 10.1038/nn1503. PubMed DOI

Hsieh H. Boehm J. Sato C. Iwatsubo T. Tomita T. Sisodia S. Neuron. 2006;52:831–843. doi: 10.1016/j.neuron.2006.10.035. doi: 10.1016/j.neuron.2006.10.035. PubMed DOI PMC

Soto C. Sigurdsson E. M. Morelli L. Kumar R. A. Castaño E. M. Frangione B. Nat. Med. 1998;4:822–826. doi: 10.1038/nm0798-822. doi: 10.1038/nm0798-822. PubMed DOI

Ghanta J. Shen C.-L. Kiessling L. L. Murphy R. M. J. Biol. Chem. 1996;271:29525–29528. doi: 10.1074/jbc.271.47.29525. doi: 10.1074/jbc.271.47.29525. PubMed DOI

Soto C. Kindy M. S. Baumann M. Frangione B. Biochem. Biophys. Res. Commun. 1996;226:672–680. doi: 10.1006/bbrc.1996.1413. doi: 10.1006/bbrc.1996.1413. PubMed DOI

Inouye H. Gleason K. A. Zhang D. Decatur S. M. Kirschner D. A. Proteins. 2010;78:2306–2321. doi: 10.1002/prot.22743. doi: 10.1002/prot.22743. PubMed DOI

Adessi C. Soto C. Drug Dev. Res. 2002;56:184–193. doi: 10.1002/ddr.10074. doi: 10.1002/ddr.10074. DOI

Sigurdsson E. M. Permanne B. Soto C. Wisniewski T. Frangione B. J. Neuropathol. Exp. Neurol. 2000;59:11–17. doi: 10.1093/jnen/59.1.11. doi: 10.1093/jnen/59.1.11. PubMed DOI

Adessi C. Frossard M. J. Boissard C. Fraga S. Bieler S. Ruckle T. Vilbois F. Robinson S. M. Mutter M. Banks W. A. Soto C. J. Biol. Chem. 2003;278:13905–13911. doi: 10.1074/jbc.m211976200. doi: 10.1074/jbc.M211976200. PubMed DOI

Bieler S. Soto C. Curr. Drug Targets. 2004;5:553–558. doi: 10.2174/1389450043345290. doi: 10.2174/1389450043345290. PubMed DOI

Bose P. P. Chatterjee U. Nerelius C. Govender T. Norström T. Gogoll A. Sandegren A. Göthelid E. Johansson J. Arvidsson P. I. J. Med. Chem. 2009;52:8002–8009. doi: 10.1021/jm901092h. doi: 10.1021/jm901092h. PubMed DOI

Amijee H. Bate C. Williams A. Virdee J. Jeggo R. Spanswick D. Scopes D. I. C. Treherne J. M. Mazzitelli S. Chawner R. Eyers C. E. Doig A. J. Biochemistry. 2012;51:8338–8352. doi: 10.1021/bi300415v. doi: 10.1021/bi300415v. PubMed DOI

Rajasekhar K. Suresh S. Manjithaya R. Govindaraju T. Sci. Rep. 2015;5:8139. doi: 10.1038/srep08139. doi: 10.1038/srep08139. PubMed DOI PMC

Rajasekhar K. Madhu C. Govindaraju T. ACS Chem. Neurosci. 2016;7:1300–1310. doi: 10.1021/acschemneuro.6b00175. doi: 10.1021/acschemneuro.6b00175. PubMed DOI

Mindt M. Risse J. M. Gruß H. Sewald N. Eikmanns B. J. Wendisch V. F. Sci. Rep. 2018;8:12895. doi: 10.1038/s41598-018-31309-5. doi: 10.1038/s41598-018-31309-5. PubMed DOI PMC

Gordon D. J. Sciarretta K. L. Meredith S. C. Biochemistry. 2001;40:8237–8245. doi: 10.1021/bi002416v. doi: 10.1021/bi002416v. PubMed DOI

Sinha S. Dahabada H. J. L. Bitan G. ACS Chem. Neurosci. 2012;3:473–481. doi: 10.1021/cn3000247. doi: 10.1021/cn3000247. PubMed DOI PMC

Deplano A. Morgillo C. M. Demurtas M. Björklund E. Cipriano M. Svensson M. Hashemian S. Smaldone G. Pedone E. Luque F. J. Cabiddu M. G. Novellino E. Fowler C. J. Catalanotti B. Onnis V. Eur. J. Med. Chem. 2017;136:523–542. doi: 10.1016/j.ejmech.2017.05.033. doi: 10.1016/j.ejmech.2017.05.033. PubMed DOI

Deplano A. Karlsson J. Svensson M. Moraca F. Catalanotti B. Fowler C. J. Onnis V. J. Enzyme Inhib. Med. Chem. 2020;35:815–823. doi: 10.1080/14756366.2020.1743283. doi: 10.1080/14756366.2020.1743283. PubMed DOI PMC

de Vega M. J. Martín-Martínez M. González-Muñiz R. Curr. Top. Med. Chem. 2007;7:33–62. doi: 10.2174/156802607779318325. doi: 10.2174/156802607779318325. PubMed DOI

Shuaib S. Narang S. S. Goyal D. Goyal B. J. Cell. Biochem. 2019;120:17935–17950. doi: 10.1002/jcb.29061. doi: 10.1002/jcb.29061. PubMed DOI

Viet M. H. Siposova K. Bednarikova Z. Antosova A. Nguyen T. T. Gazova Z. Li M. S. J. Phys. Chem. B. 2015;119:5145–5155. doi: 10.1021/acs.jpcb.5b00006. doi: 10.1021/acs.jpcb.5b00006. PubMed DOI

Eskici G. Gur M. PLoS One. 2013;8:e66178. doi: 10.1371/journal.pone.0066178. doi: 10.1371/journal.pone.0066178. PubMed DOI PMC

Bruce N. J. Chen D. Dastidar S. G. Marks G. E. Schein C. H. Bryce R. A. Peptides. 2010;31:2100–2108. doi: 10.1016/j.peptides.2010.07.015. doi: 10.1016/j.peptides.2010.07.015. PubMed DOI

Hetényi C. Körtvélyesi T. Penke B. Bioorg. Med. Chem. 2002;10:1587–1593. doi: 10.1016/s0968-0896(01)00424-2. doi: 10.1016/S0968-0896(01)00424-2. PubMed DOI

Sciarretta K. L. Gordon D. J. Meredith S. C. Methods Enzymol. 2006;413:273–312. doi: 10.1016/s0076-6879(06)13015-3. PubMed DOI

Gaglione R. Smaldone G. Di Girolamo R. Piccoli R. Pedone E. Arciello A. Biochim. Biophys. Acta, Gen. Subj. 2018;1862:377–384. doi: 10.1016/j.bbagen.2017.11.018. doi: 10.1016/j.bbagen.2017.11.018. PubMed DOI

Minicozzi V. Chiaraluce R. Consalvi V. Giordano C. Narcisi C. Punzi P. Rossi G. C. Morante S. J. Biol. Chem. 2014;289:11242–11252. doi: 10.1074/jbc.M113.537472. doi: 10.1074/jbc.M113.537472. PubMed DOI PMC

Pang C. Zhang N. Falahati M. Int. J. Biol. Macromol. 2021;169:532–540. doi: 10.1016/j.ijbiomac.2020.12.130. doi: 10.1016/j.ijbiomac.2020.12.130. PubMed DOI

Katebi B. Mahdavimehr M. Meratan A. A. Ghasemi A. Nemat-Gorgani M. Arch. Biochem. Biophys. 2018;659:22–32. doi: 10.1016/j.abb.2018.09.024. doi: 10.1016/j.abb.2018.09.024. PubMed DOI

Xicoy H. Wieringa B. Martens G. J. M. Mol. Neurodegener. 2017;12:10. doi: 10.1186/s13024-017-0149-0. doi: 10.1186/s13024-017-0149-0. PubMed DOI PMC

Siddiqi M. K. Majid N. Alam P. Malik S. Alam A. Rajan S. Ajmal M. R. Khan R. H. Int. J. Biol. Macromol. 2020;143:102–111. doi: 10.1016/j.ijbiomac.2019.11.222. doi: 10.1016/j.ijbiomac.2019.11.222. PubMed DOI

Francioso A. Punzi P. Boffi A. Lori C. Martire S. Giordano C. D'Erme M. Mosca L. Bioorg. Med. Chem. 2015;23:1671–1683. doi: 10.1016/j.bmc.2015.02.041. doi: 10.1016/j.bmc.2015.02.041. PubMed DOI

Nakagami Y. Nishimura S. Murasugi T. Kaneko I. Meguro M. Marumoto S. Kogen H. Koyama K. Oda T. Br. J. Pharmacol. 2002;137:676–682. doi: 10.1038/sj.bjp.0704911. doi: 10.1038/sj.bjp.0704911. PubMed DOI PMC

Shanmugam G. Polavarapu P. L. Biophys. J. 2004;87:622–630. doi: 10.1529/biophysj.104.040907. doi: 10.1529/biophysj.104.040907. PubMed DOI PMC

Baroni M. Cruciani G. Sciabola S. Perruccio F. Mason J. S. J. Chem. Inf. Model. 2007;47:279–294. doi: 10.1021/ci600253e. doi: 10.1021/ci600253e. PubMed DOI

Lupia A. Mimmi S. Iaccino E. Maisano D. Moraca F. Talarico C. Vecchio E. Fiume G. Ortuso F. Scala G. Quinto I. Alcaro S. Eur. J. Med. Chem. 2020;185:111838. doi: 10.1016/j.ejmech.2019.111838. doi: 10.1016/j.ejmech.2019.111838. PubMed DOI

Moraca F. Amato J. Ortuso F. Artese A. Pagano B. Novellino E. Alcaro S. Parrinello M. Limongelli V. Proc. Natl. Acad. Sci. U. S. A. 2017;114:E2136–E2145. doi: 10.1073/pnas.1612627114. doi: 10.1073/pnas.1612627114. PubMed DOI PMC

Ortuso F. Langer T. Alcaro S. Bioinformatics. 2006;22:1449–1455. doi: 10.1093/bioinformatics/btl115. doi: 10.1093/bioinformatics/btl115. PubMed DOI

Cross S. Baroni M. Goracci L. Cruciani G. J. Chem. Inf. Model. 2012;52:2587–2598. doi: 10.1021/ci300153d. doi: 10.1021/ci300153d. PubMed DOI

Goodford P. J. J. Med. Chem. 1985;28:849–857. doi: 10.1021/jm00145a002. doi: 10.1021/jm00145a002. PubMed DOI

Cross S. Ortuso F. Baroni M. Costa G. Distinto S. Moraca F. Alcaro S. Cruciani G. J. Chem. Inf. Model. 2012;52:2599–2608. doi: 10.1021/ci300154n. doi: 10.1021/ci300154n. PubMed DOI

Tomaselli S. Esposito V. Vangone P. van Nuland N. A. J. Bonvin A. M. J. J. Guerrieri R. Tancredi T. Temussi P. A. Picone D. ChemBioChem. 2006;7:257–267. doi: 10.1002/cbic.200500223. doi: 10.1002/cbic.200500223. PubMed DOI

Lührs T. Ritter C. Adrian M. Riek-Loher D. Bohrmann B. Döbeli H. Schubert D. Riek R. Proc. Natl. Acad. Sci. U. S. A. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. doi: 10.1073/pnas.0506723102. PubMed DOI PMC

Wood S. J. Wetzel R. Martin J. D. Hurle M. R. Biochemistry. 1995;34:724–730. doi: 10.1021/bi00003a003. doi: 10.1021/bi00003a003. PubMed DOI

Earl D. J. Deem M. W. Phys. Chem. Chem. Phys. 2005;7:3910–3916. doi: 10.1039/B509983H. doi: 10.1039/B509983H. PubMed DOI

Bonomi M. Parrinello M. Phys. Rev. Lett. 2010;104:190601. doi: 10.1103/PhysRevLett.104.190601. doi: 10.1103/PhysRevLett.104.190601. PubMed DOI

Palazzesi F. Barducci A. Tollinger M. Parrinello M. Proc. Natl. Acad. Sci. U. S. A. 2013;110:14237–14242. doi: 10.1073/pnas.1313548110. doi: 10.1073/pnas.1313548110. PubMed DOI PMC

Prakash M. K. Barducci A. Parrinello M. J. Chem. Theory Comput. 2011;7:2025–2027. doi: 10.1021/ct200208h. doi: 10.1021/ct200208h. PubMed DOI

Tiwary P. Parrinello M. A. J. Phys. Chem. B. 2015;119:736–742. doi: 10.1021/jp504920s. doi: 10.1021/jp504920s. PubMed DOI

Fändrich M. Meinhardt J. Grigorieff N. Structural polymorphism of Alzheimer Aβ and other fibrils. Prion. 2009;3:89–93. doi: 10.4161/pri.3.2.8859. PubMed DOI PMC

Boopathi S. Kolandaivel P. Role of the zinc and copper metal ions in amyloid β-peptides Aβ1-40 and Aβ1-42 aggregation. RSC Adv. 2014;4:38951–38965. doi: 10.1039/C4RA05390G. DOI

Rodríguez M. H. Morales L. G. F. Basurto J. C. Hernández M. C. R. Molecular Docking and Molecular Dynamics Simulation to Evaluate Compounds That Avoid the Amyloid Beta 1-42 Aggregation. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer's Disease. Neuromethods. 2018;132 doi: 10.1007/978-1-4939-7404-7_9. DOI

Pacifico S. Gallicchio M. Lorenz P. Duckstein S. M. Potenza N. Galasso S. Marciano S. Fiorentino A. Stintzing F. C. Monaco P. Chem. Res. Toxicol. 2014;27:611–626. doi: 10.1021/tx5000415. PubMed DOI

Ciardiello A. Altieri S. Ballarini F. Bocci V. Bortolussi S. Cansolino L. Carlotti D. Ciocca M. Faccini R. Facoetti A. Ferrari C. Ficcadenti L. Furfaro E. Giagu S. Iacoangeli F. Macioce G. Mancini-Terracciano C. Messina A. Milazzo L. Pacifico S. Piccolella S. Postuma I. Rotili D. Vercesi V. Voena C. Vulcano F. Capuani S. Phys. Med. 2022;94:75–84. doi: 10.1016/j.ejmp.2021.12.011. PubMed DOI

Schrödinger Release 2019-1: Maestro, Schrödinger, LLC, New York, NY

Colletier J. P. Laganowsky A. Landau M. Zhao M. Soriaga A. B. Goldschmidt L. Flot D. Cascio D. Sawaya M. R. Eisenberg D. Proc. Natl. Acad. Sci. U. S. A. 2011;108:16938–16943. doi: 10.1073/pnas.1112600108. doi: 10.1073/pnas.1112600108. PubMed DOI PMC

Madhavi Sastry G. Adzhigirey M. Day T. Annabhimoju R. Sherman W. J. Comput.-Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. doi: 10.1007/s10822-013-9644-8. PubMed DOI

Case D. A., Ben-Shalom I. Y., Brozell S. R., Cerutti D. S., Cheatham III T. E., Cruzeiro V. W. D., Darden R. E., Duke D., Ghoreishi M. K., Gilson H., Gohlke A. W., Goetz D., Greene R., Harris N., Homeyer Y., Huang S., Izadi A., Kovalenko T., Kurtzman T. S., Lee S., LeGrand P., Li C., Lin J., Liu T., Luchko R., Luo D. J., Mermelstein K. M., Merz Y., Miao G., Monard C., Nguyen H., Nguyen I., Omelyan A., Onufriev F., Pan R., Qi D. R., Roe A., Roitberg C., Sagui S., Schott-Verdugo J., Shen C. L., Simmerling J., Smith R., Salomon-Ferrer J., Swails R. C., Walker J., Wang H., Wei R. M., Wolf X., Wu L., Xiao D. M. Y. and Kollman P. A., AMBER 2018, University of California, San Francisco, 2018

Maier J. A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K. E. Simmerling C. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Khoury G. A. Smadbeck J. Tamamis P. Vandris A. C. Kieslich C. A. Floudas C. A. Synth A. C. S. Biologia. 2014;3:855–869. doi: 10.1021/sb400168u. PubMed DOI PMC

van der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A. E. Berendsen H. J. C. J. Comput. Chem. 2020;26:1701–1718. doi: 10.1002/jcc.20291. doi: 10.1002/jcc.20291. PubMed DOI

Tribello G. A. Bonomi M. Branduardi D. Camilloni C. Bussi G. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. doi: 10.1016/j.cpc.2013.09.018. DOI

Barducci A. Bussi G. Parrinello M. Phys. Rev. Lett. 2008;100:020603. doi: 10.1103/PhysRevLett.100.020603. doi: 10.1103/PhysRevLett.100.020603. PubMed DOI

Bussi G. Laio A. Nat. Rev. Phys. 2020;2:200–212. doi: 10.1038/s42254-020-0153-0. doi: 10.1038/s42254-020-0153-0. DOI

Eberhardt J. Santos-Martins D. Tillack A. F. Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC

Trott O. Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. doi: 10.1002/jcc.21334. PubMed DOI PMC

Lührs T. Ritter C. Adrian M. Riek-Loher D. Bohrmann B. Döbeli H. Schubert D. Riek R. 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. U. S. A. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. PubMed DOI PMC

Wälti M. A. Ravotti F. Arai H. Glabe C. G. Wall J. S. Böckmann A. Güntert P. Meier B. H. Riek R. Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Proc. Natl. Acad. Sci. U. S. A. 2016;113:E4976–E4984. doi: 10.1073/pnas.1600749113. PubMed DOI PMC

Gremer L. Schölzel D. Schenk C. Reinartz E. Labahn J. Ravelli R. B. G. Tusche M. Lopez-Iglesias C. Hoyer W. Heise H. Willbold D. Schröder G. F. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science. 2017;358:116–119. doi: 10.1126/science.aao2825. PubMed DOI PMC

Carbone J. Ghidini A. Romano A. Gentilucci L. Musiani F. PackDOCK: A Web Server for Positional Distance-Based and Interaction-based Analysis of Docking Results. Molecules. 2022;27:6884. doi: 10.3390/molecules27206884. PubMed DOI PMC

Adasme M. F. Linnemann K. L. Bolz S. N. Kaiser F. Salentin S. Haupt V. J. Schroeder M. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49:W530–W534. doi: 10.1093/nar/gkab294. doi: 10.1093/nar/gkab294. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...