Synthesis, biological evaluation and metadynamics simulations of novel N-methyl β-sheet breaker peptides as inhibitors of Alzheimer's β-amyloid fibrillogenesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39026638
PubMed Central
PMC11253850
DOI
10.1039/d4md00057a
PII: d4md00057a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Several scientific evidences report that a central role in the pathogenesis of Alzheimer's disease is played by the deposition of insoluble aggregates of β-amyloid proteins in the brain. Because Aβ is self-assembling, one possible design strategy is to inhibit the aggregation of Aβ peptides using short peptide fragments homologous to the full-length wild-type Aβ protein. In the past years, several studies have reported on the synthesis of some short synthetic peptides called β-sheet breaker peptides (BSBPs). Herein, we present the synthesis of novel (cell-permeable) N-methyl BSBPs, designed based on literature information on the structural key features of BSBPs. Three-dimensional GRID-based pharmacophore peptide screening combined with PT-WTE metadynamics was performed to support the results of the design and microwave-assisted synthesis of peptides 2 and 3 prepared and analyzed for their fibrillogenesis inhibition activity and cytotoxicity. An HR-MS-based cell metabolomic approach highlighted their cell permeability properties.
Department of Chemical Sciences University of Napoli Federico 2 Via Cintia 4 1 80126 Napoli Italy
Department of Sciences University of Basilicata Viale dell'Ateneo Lucano 1 85100 Potenza Italy
Istituto Nazionale di Biostrutture e Biosistemi Viale delle Medaglie d'Oro 305 1 80145 Roma Italy
Zobrazit více v PubMed
Baig M. H. Ahmad K. Rabbani G. Choi I. Front. Aging Neurosci. 2018;10:21. doi: 10.3389/fnagi.2018.00021. doi: 10.3389/fnagi.2018.00021. PubMed DOI PMC
Iizuka T. Shoji M. Kawarabayashi T. Sato M. Kobayashi T. Tada N. Kasai K. Matsubara E. Watanabe M. Tomidokoro Y. Hirai S. Biochem. Biophys. Res. Commun. 1996;218:238–242. doi: 10.1006/bbrc.1996.0042. doi: 10.1006/bbrc.1996.0042. PubMed DOI
Volloch V. Rits S. Med. Sci. 2018;6:45. doi: 10.3390/medsci6020045. PubMed DOI PMC
Acosta D. M. Á. V. Vega B. C. Basurto J. C. Morales L. G. F. Hernández M. C. R. Int. J. Mol. Sci. 2018;19:2415. doi: 10.3390/ijms19082415. doi: 10.3390/ijms19082415. PubMed DOI PMC
Aleksis R. Oleskovs F. Jaudzems K. Pahnke J. Biverstål H. Biochimie. 2017;140:176–192. doi: 10.1016/j.biochi.2017.07.011. doi: 10.1016/j.biochi.2017.07.011. PubMed DOI
Straub J. E. Thirumalai D. Annu. Rev. Phys. Chem. 2011;62:437–463. doi: 10.1146/annurev-physchem-032210-103526. doi: 10.1146/annurev-physchem-032210-103526. PubMed DOI PMC
Benilova I. Karran E. De Strooper B. Nat. Neurosci. 2012;15:349–357. doi: 10.1038/nn.3028. doi: 10.1038/nn.3028. PubMed DOI
Hayden E. Y. Teplow D. B. Alzheimer's Res. Ther. 2013;5:60. doi: 10.1186/alzrt226. doi: 10.1186/alzrt226. PubMed DOI PMC
Butterfield S. M. Lashuel H. A. Angew. Chem., Int. Ed. 2010;49:5628–5654. doi: 10.1002/anie.200906670. doi: 10.1002/anie.200906670. PubMed DOI
Lashuel H. A. Hartley D. Petre B. M. Walz T. Lansbury P. T. Nature. 2002;418:291. doi: 10.1038/418291a. doi: 10.1038/418291a. PubMed DOI
Shankar G. M. Bloodgood B. L. Townsend M. Walsh D. M. Selkoe D. J. Sabatini B. L. J. Neurosci. 2007;27:2866–2875. doi: 10.1523/JNEUROSCI.4970-06.2007. doi: 10.1523/JNEUROSCI.4970-06.2007. PubMed DOI PMC
Kelly B. L. Ferreira A. J. Biol. Chem. 2006;281:28079–28089. doi: 10.1074/jbc.M605081200. doi: 10.1074/jbc.M605081200. PubMed DOI
Snyder E. M. Nong Y. Almeida C. G. Paul S. Moran T. Choi E. Y. Nat. Neurosci. 2005;8:1051–1058. doi: 10.1038/nn1503. doi: 10.1038/nn1503. PubMed DOI
Hsieh H. Boehm J. Sato C. Iwatsubo T. Tomita T. Sisodia S. Neuron. 2006;52:831–843. doi: 10.1016/j.neuron.2006.10.035. doi: 10.1016/j.neuron.2006.10.035. PubMed DOI PMC
Soto C. Sigurdsson E. M. Morelli L. Kumar R. A. Castaño E. M. Frangione B. Nat. Med. 1998;4:822–826. doi: 10.1038/nm0798-822. doi: 10.1038/nm0798-822. PubMed DOI
Ghanta J. Shen C.-L. Kiessling L. L. Murphy R. M. J. Biol. Chem. 1996;271:29525–29528. doi: 10.1074/jbc.271.47.29525. doi: 10.1074/jbc.271.47.29525. PubMed DOI
Soto C. Kindy M. S. Baumann M. Frangione B. Biochem. Biophys. Res. Commun. 1996;226:672–680. doi: 10.1006/bbrc.1996.1413. doi: 10.1006/bbrc.1996.1413. PubMed DOI
Inouye H. Gleason K. A. Zhang D. Decatur S. M. Kirschner D. A. Proteins. 2010;78:2306–2321. doi: 10.1002/prot.22743. doi: 10.1002/prot.22743. PubMed DOI
Adessi C. Soto C. Drug Dev. Res. 2002;56:184–193. doi: 10.1002/ddr.10074. doi: 10.1002/ddr.10074. DOI
Sigurdsson E. M. Permanne B. Soto C. Wisniewski T. Frangione B. J. Neuropathol. Exp. Neurol. 2000;59:11–17. doi: 10.1093/jnen/59.1.11. doi: 10.1093/jnen/59.1.11. PubMed DOI
Adessi C. Frossard M. J. Boissard C. Fraga S. Bieler S. Ruckle T. Vilbois F. Robinson S. M. Mutter M. Banks W. A. Soto C. J. Biol. Chem. 2003;278:13905–13911. doi: 10.1074/jbc.m211976200. doi: 10.1074/jbc.M211976200. PubMed DOI
Bieler S. Soto C. Curr. Drug Targets. 2004;5:553–558. doi: 10.2174/1389450043345290. doi: 10.2174/1389450043345290. PubMed DOI
Bose P. P. Chatterjee U. Nerelius C. Govender T. Norström T. Gogoll A. Sandegren A. Göthelid E. Johansson J. Arvidsson P. I. J. Med. Chem. 2009;52:8002–8009. doi: 10.1021/jm901092h. doi: 10.1021/jm901092h. PubMed DOI
Amijee H. Bate C. Williams A. Virdee J. Jeggo R. Spanswick D. Scopes D. I. C. Treherne J. M. Mazzitelli S. Chawner R. Eyers C. E. Doig A. J. Biochemistry. 2012;51:8338–8352. doi: 10.1021/bi300415v. doi: 10.1021/bi300415v. PubMed DOI
Rajasekhar K. Suresh S. Manjithaya R. Govindaraju T. Sci. Rep. 2015;5:8139. doi: 10.1038/srep08139. doi: 10.1038/srep08139. PubMed DOI PMC
Rajasekhar K. Madhu C. Govindaraju T. ACS Chem. Neurosci. 2016;7:1300–1310. doi: 10.1021/acschemneuro.6b00175. doi: 10.1021/acschemneuro.6b00175. PubMed DOI
Mindt M. Risse J. M. Gruß H. Sewald N. Eikmanns B. J. Wendisch V. F. Sci. Rep. 2018;8:12895. doi: 10.1038/s41598-018-31309-5. doi: 10.1038/s41598-018-31309-5. PubMed DOI PMC
Gordon D. J. Sciarretta K. L. Meredith S. C. Biochemistry. 2001;40:8237–8245. doi: 10.1021/bi002416v. doi: 10.1021/bi002416v. PubMed DOI
Sinha S. Dahabada H. J. L. Bitan G. ACS Chem. Neurosci. 2012;3:473–481. doi: 10.1021/cn3000247. doi: 10.1021/cn3000247. PubMed DOI PMC
Deplano A. Morgillo C. M. Demurtas M. Björklund E. Cipriano M. Svensson M. Hashemian S. Smaldone G. Pedone E. Luque F. J. Cabiddu M. G. Novellino E. Fowler C. J. Catalanotti B. Onnis V. Eur. J. Med. Chem. 2017;136:523–542. doi: 10.1016/j.ejmech.2017.05.033. doi: 10.1016/j.ejmech.2017.05.033. PubMed DOI
Deplano A. Karlsson J. Svensson M. Moraca F. Catalanotti B. Fowler C. J. Onnis V. J. Enzyme Inhib. Med. Chem. 2020;35:815–823. doi: 10.1080/14756366.2020.1743283. doi: 10.1080/14756366.2020.1743283. PubMed DOI PMC
de Vega M. J. Martín-Martínez M. González-Muñiz R. Curr. Top. Med. Chem. 2007;7:33–62. doi: 10.2174/156802607779318325. doi: 10.2174/156802607779318325. PubMed DOI
Shuaib S. Narang S. S. Goyal D. Goyal B. J. Cell. Biochem. 2019;120:17935–17950. doi: 10.1002/jcb.29061. doi: 10.1002/jcb.29061. PubMed DOI
Viet M. H. Siposova K. Bednarikova Z. Antosova A. Nguyen T. T. Gazova Z. Li M. S. J. Phys. Chem. B. 2015;119:5145–5155. doi: 10.1021/acs.jpcb.5b00006. doi: 10.1021/acs.jpcb.5b00006. PubMed DOI
Eskici G. Gur M. PLoS One. 2013;8:e66178. doi: 10.1371/journal.pone.0066178. doi: 10.1371/journal.pone.0066178. PubMed DOI PMC
Bruce N. J. Chen D. Dastidar S. G. Marks G. E. Schein C. H. Bryce R. A. Peptides. 2010;31:2100–2108. doi: 10.1016/j.peptides.2010.07.015. doi: 10.1016/j.peptides.2010.07.015. PubMed DOI
Hetényi C. Körtvélyesi T. Penke B. Bioorg. Med. Chem. 2002;10:1587–1593. doi: 10.1016/s0968-0896(01)00424-2. doi: 10.1016/S0968-0896(01)00424-2. PubMed DOI
Sciarretta K. L. Gordon D. J. Meredith S. C. Methods Enzymol. 2006;413:273–312. doi: 10.1016/s0076-6879(06)13015-3. PubMed DOI
Gaglione R. Smaldone G. Di Girolamo R. Piccoli R. Pedone E. Arciello A. Biochim. Biophys. Acta, Gen. Subj. 2018;1862:377–384. doi: 10.1016/j.bbagen.2017.11.018. doi: 10.1016/j.bbagen.2017.11.018. PubMed DOI
Minicozzi V. Chiaraluce R. Consalvi V. Giordano C. Narcisi C. Punzi P. Rossi G. C. Morante S. J. Biol. Chem. 2014;289:11242–11252. doi: 10.1074/jbc.M113.537472. doi: 10.1074/jbc.M113.537472. PubMed DOI PMC
Pang C. Zhang N. Falahati M. Int. J. Biol. Macromol. 2021;169:532–540. doi: 10.1016/j.ijbiomac.2020.12.130. doi: 10.1016/j.ijbiomac.2020.12.130. PubMed DOI
Katebi B. Mahdavimehr M. Meratan A. A. Ghasemi A. Nemat-Gorgani M. Arch. Biochem. Biophys. 2018;659:22–32. doi: 10.1016/j.abb.2018.09.024. doi: 10.1016/j.abb.2018.09.024. PubMed DOI
Xicoy H. Wieringa B. Martens G. J. M. Mol. Neurodegener. 2017;12:10. doi: 10.1186/s13024-017-0149-0. doi: 10.1186/s13024-017-0149-0. PubMed DOI PMC
Siddiqi M. K. Majid N. Alam P. Malik S. Alam A. Rajan S. Ajmal M. R. Khan R. H. Int. J. Biol. Macromol. 2020;143:102–111. doi: 10.1016/j.ijbiomac.2019.11.222. doi: 10.1016/j.ijbiomac.2019.11.222. PubMed DOI
Francioso A. Punzi P. Boffi A. Lori C. Martire S. Giordano C. D'Erme M. Mosca L. Bioorg. Med. Chem. 2015;23:1671–1683. doi: 10.1016/j.bmc.2015.02.041. doi: 10.1016/j.bmc.2015.02.041. PubMed DOI
Nakagami Y. Nishimura S. Murasugi T. Kaneko I. Meguro M. Marumoto S. Kogen H. Koyama K. Oda T. Br. J. Pharmacol. 2002;137:676–682. doi: 10.1038/sj.bjp.0704911. doi: 10.1038/sj.bjp.0704911. PubMed DOI PMC
Shanmugam G. Polavarapu P. L. Biophys. J. 2004;87:622–630. doi: 10.1529/biophysj.104.040907. doi: 10.1529/biophysj.104.040907. PubMed DOI PMC
Baroni M. Cruciani G. Sciabola S. Perruccio F. Mason J. S. J. Chem. Inf. Model. 2007;47:279–294. doi: 10.1021/ci600253e. doi: 10.1021/ci600253e. PubMed DOI
Lupia A. Mimmi S. Iaccino E. Maisano D. Moraca F. Talarico C. Vecchio E. Fiume G. Ortuso F. Scala G. Quinto I. Alcaro S. Eur. J. Med. Chem. 2020;185:111838. doi: 10.1016/j.ejmech.2019.111838. doi: 10.1016/j.ejmech.2019.111838. PubMed DOI
Moraca F. Amato J. Ortuso F. Artese A. Pagano B. Novellino E. Alcaro S. Parrinello M. Limongelli V. Proc. Natl. Acad. Sci. U. S. A. 2017;114:E2136–E2145. doi: 10.1073/pnas.1612627114. doi: 10.1073/pnas.1612627114. PubMed DOI PMC
Ortuso F. Langer T. Alcaro S. Bioinformatics. 2006;22:1449–1455. doi: 10.1093/bioinformatics/btl115. doi: 10.1093/bioinformatics/btl115. PubMed DOI
Cross S. Baroni M. Goracci L. Cruciani G. J. Chem. Inf. Model. 2012;52:2587–2598. doi: 10.1021/ci300153d. doi: 10.1021/ci300153d. PubMed DOI
Goodford P. J. J. Med. Chem. 1985;28:849–857. doi: 10.1021/jm00145a002. doi: 10.1021/jm00145a002. PubMed DOI
Cross S. Ortuso F. Baroni M. Costa G. Distinto S. Moraca F. Alcaro S. Cruciani G. J. Chem. Inf. Model. 2012;52:2599–2608. doi: 10.1021/ci300154n. doi: 10.1021/ci300154n. PubMed DOI
Tomaselli S. Esposito V. Vangone P. van Nuland N. A. J. Bonvin A. M. J. J. Guerrieri R. Tancredi T. Temussi P. A. Picone D. ChemBioChem. 2006;7:257–267. doi: 10.1002/cbic.200500223. doi: 10.1002/cbic.200500223. PubMed DOI
Lührs T. Ritter C. Adrian M. Riek-Loher D. Bohrmann B. Döbeli H. Schubert D. Riek R. Proc. Natl. Acad. Sci. U. S. A. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. doi: 10.1073/pnas.0506723102. PubMed DOI PMC
Wood S. J. Wetzel R. Martin J. D. Hurle M. R. Biochemistry. 1995;34:724–730. doi: 10.1021/bi00003a003. doi: 10.1021/bi00003a003. PubMed DOI
Earl D. J. Deem M. W. Phys. Chem. Chem. Phys. 2005;7:3910–3916. doi: 10.1039/B509983H. doi: 10.1039/B509983H. PubMed DOI
Bonomi M. Parrinello M. Phys. Rev. Lett. 2010;104:190601. doi: 10.1103/PhysRevLett.104.190601. doi: 10.1103/PhysRevLett.104.190601. PubMed DOI
Palazzesi F. Barducci A. Tollinger M. Parrinello M. Proc. Natl. Acad. Sci. U. S. A. 2013;110:14237–14242. doi: 10.1073/pnas.1313548110. doi: 10.1073/pnas.1313548110. PubMed DOI PMC
Prakash M. K. Barducci A. Parrinello M. J. Chem. Theory Comput. 2011;7:2025–2027. doi: 10.1021/ct200208h. doi: 10.1021/ct200208h. PubMed DOI
Tiwary P. Parrinello M. A. J. Phys. Chem. B. 2015;119:736–742. doi: 10.1021/jp504920s. doi: 10.1021/jp504920s. PubMed DOI
Fändrich M. Meinhardt J. Grigorieff N. Structural polymorphism of Alzheimer Aβ and other fibrils. Prion. 2009;3:89–93. doi: 10.4161/pri.3.2.8859. PubMed DOI PMC
Boopathi S. Kolandaivel P. Role of the zinc and copper metal ions in amyloid β-peptides Aβ1-40 and Aβ1-42 aggregation. RSC Adv. 2014;4:38951–38965. doi: 10.1039/C4RA05390G. DOI
Rodríguez M. H. Morales L. G. F. Basurto J. C. Hernández M. C. R. Molecular Docking and Molecular Dynamics Simulation to Evaluate Compounds That Avoid the Amyloid Beta 1-42 Aggregation. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer's Disease. Neuromethods. 2018;132 doi: 10.1007/978-1-4939-7404-7_9. DOI
Pacifico S. Gallicchio M. Lorenz P. Duckstein S. M. Potenza N. Galasso S. Marciano S. Fiorentino A. Stintzing F. C. Monaco P. Chem. Res. Toxicol. 2014;27:611–626. doi: 10.1021/tx5000415. PubMed DOI
Ciardiello A. Altieri S. Ballarini F. Bocci V. Bortolussi S. Cansolino L. Carlotti D. Ciocca M. Faccini R. Facoetti A. Ferrari C. Ficcadenti L. Furfaro E. Giagu S. Iacoangeli F. Macioce G. Mancini-Terracciano C. Messina A. Milazzo L. Pacifico S. Piccolella S. Postuma I. Rotili D. Vercesi V. Voena C. Vulcano F. Capuani S. Phys. Med. 2022;94:75–84. doi: 10.1016/j.ejmp.2021.12.011. PubMed DOI
Schrödinger Release 2019-1: Maestro, Schrödinger, LLC, New York, NY
Colletier J. P. Laganowsky A. Landau M. Zhao M. Soriaga A. B. Goldschmidt L. Flot D. Cascio D. Sawaya M. R. Eisenberg D. Proc. Natl. Acad. Sci. U. S. A. 2011;108:16938–16943. doi: 10.1073/pnas.1112600108. doi: 10.1073/pnas.1112600108. PubMed DOI PMC
Madhavi Sastry G. Adzhigirey M. Day T. Annabhimoju R. Sherman W. J. Comput.-Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. doi: 10.1007/s10822-013-9644-8. PubMed DOI
Case D. A., Ben-Shalom I. Y., Brozell S. R., Cerutti D. S., Cheatham III T. E., Cruzeiro V. W. D., Darden R. E., Duke D., Ghoreishi M. K., Gilson H., Gohlke A. W., Goetz D., Greene R., Harris N., Homeyer Y., Huang S., Izadi A., Kovalenko T., Kurtzman T. S., Lee S., LeGrand P., Li C., Lin J., Liu T., Luchko R., Luo D. J., Mermelstein K. M., Merz Y., Miao G., Monard C., Nguyen H., Nguyen I., Omelyan A., Onufriev F., Pan R., Qi D. R., Roe A., Roitberg C., Sagui S., Schott-Verdugo J., Shen C. L., Simmerling J., Smith R., Salomon-Ferrer J., Swails R. C., Walker J., Wang H., Wei R. M., Wolf X., Wu L., Xiao D. M. Y. and Kollman P. A., AMBER 2018, University of California, San Francisco, 2018
Maier J. A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K. E. Simmerling C. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Khoury G. A. Smadbeck J. Tamamis P. Vandris A. C. Kieslich C. A. Floudas C. A. Synth A. C. S. Biologia. 2014;3:855–869. doi: 10.1021/sb400168u. PubMed DOI PMC
van der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A. E. Berendsen H. J. C. J. Comput. Chem. 2020;26:1701–1718. doi: 10.1002/jcc.20291. doi: 10.1002/jcc.20291. PubMed DOI
Tribello G. A. Bonomi M. Branduardi D. Camilloni C. Bussi G. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. doi: 10.1016/j.cpc.2013.09.018. DOI
Barducci A. Bussi G. Parrinello M. Phys. Rev. Lett. 2008;100:020603. doi: 10.1103/PhysRevLett.100.020603. doi: 10.1103/PhysRevLett.100.020603. PubMed DOI
Bussi G. Laio A. Nat. Rev. Phys. 2020;2:200–212. doi: 10.1038/s42254-020-0153-0. doi: 10.1038/s42254-020-0153-0. DOI
Eberhardt J. Santos-Martins D. Tillack A. F. Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC
Trott O. Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. doi: 10.1002/jcc.21334. PubMed DOI PMC
Lührs T. Ritter C. Adrian M. Riek-Loher D. Bohrmann B. Döbeli H. Schubert D. Riek R. 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. U. S. A. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. PubMed DOI PMC
Wälti M. A. Ravotti F. Arai H. Glabe C. G. Wall J. S. Böckmann A. Güntert P. Meier B. H. Riek R. Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Proc. Natl. Acad. Sci. U. S. A. 2016;113:E4976–E4984. doi: 10.1073/pnas.1600749113. PubMed DOI PMC
Gremer L. Schölzel D. Schenk C. Reinartz E. Labahn J. Ravelli R. B. G. Tusche M. Lopez-Iglesias C. Hoyer W. Heise H. Willbold D. Schröder G. F. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science. 2017;358:116–119. doi: 10.1126/science.aao2825. PubMed DOI PMC
Carbone J. Ghidini A. Romano A. Gentilucci L. Musiani F. PackDOCK: A Web Server for Positional Distance-Based and Interaction-based Analysis of Docking Results. Molecules. 2022;27:6884. doi: 10.3390/molecules27206884. PubMed DOI PMC
Adasme M. F. Linnemann K. L. Bolz S. N. Kaiser F. Salentin S. Haupt V. J. Schroeder M. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49:W530–W534. doi: 10.1093/nar/gkab294. doi: 10.1093/nar/gkab294. PubMed DOI PMC