Molecular mechanisms of proteoglycan-mediated semaphorin signaling in axon guidance

. 2024 Jul 30 ; 121 (31) : e2402755121. [epub] 20240723

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39042673

Grantová podpora
R01 DC005982 NIDCD NIH HHS - United States
R01-DC005982 Foundation for the National Institutes of Health (FNIH)
21-27204 M Czech Science Foundation

The precise assembly of a functional nervous system relies on axon guidance cues. Beyond engaging their cognate receptors and initiating signaling cascades that modulate cytoskeletal dynamics, guidance cues also bind components of the extracellular matrix, notably proteoglycans, yet the role and mechanisms of these interactions remain poorly understood. We found that Drosophila secreted semaphorins bind specifically to glycosaminoglycan (GAG) chains of proteoglycans, showing a preference based on the degree of sulfation. Structural analysis of Sema2b unveiled multiple GAG-binding sites positioned outside canonical plexin-binding site, with the highest affinity binding site located at the C-terminal tail, characterized by a lysine-rich helical arrangement that appears to be conserved across secreted semaphorins. In vivo studies revealed a crucial role of the Sema2b C-terminal tail in specifying the trajectory of olfactory receptor neurons. We propose that secreted semaphorins tether to the cell surface through interactions with GAG chains of proteoglycans, facilitating their presentation to cognate receptors on passing axons.

Zobrazit více v PubMed

Dickson B. J., Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002). PubMed

Fawcett J. W., Kwok J. C. F., Proteoglycan sulphation in the function of the mature central nervous system. Front. Integr. Neurosci. 16, 895493 (2022). PubMed PMC

Wang L., Denburg J. L., A role for proteoglycans in the guidance of a subset of pioneer axons in cultured embryos of the cockroach. Neuron 8, 701–714 (1992). PubMed

Irie A., Yates E. A., Turnbull J. E., Holt C. E., Specific heparan sulfate structures involved in retinal axon targeting. Development 129, 61–70 (2002). PubMed

Walz A., et al. , Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 124, 2421–2430 (1997). PubMed

Inatani M., Irie F., Plump A. S., Tessier-Lavigne M., Yamaguchi Y., Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302, 1044–1046 (2003). PubMed

Pratt T., Conway C. D., Tian N. M., Price D. J., Mason J. O., Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J. Neurosci. 26, 6911–6923 (2006). PubMed PMC

Johnson K. G., et al. , Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance. Curr. Biol. 14, 499–504 (2004). PubMed

Steigemann P., Molitor A., Fellert S., Jackle H., Vorbruggen G., Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling. Curr. Biol. 14, 225–230 (2004). PubMed

Cho J. Y., Chak K., Andreone B. J., Wooley J. R., Kolodkin A. L., The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev. 26, 2222–2235 (2012). PubMed PMC

Bulow H. E., Hobert O., Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41, 723–736 (2004). PubMed

Holt C. E., Dickson B. J., Sugar codes for axons? Neuron 46, 169–172 (2005). PubMed PMC

Pasterkamp R. J., Getting neural circuits into shape with semaphorins. Nat. Rev. Neurosci. 13, 605–618 (2012). PubMed

De Wit J., De Winter F., Klooster J., Verhaagen J., Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol. Cell Neurosci. 29, 40–55 (2005). PubMed

Vo T., et al. , The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol. Cell Neurosci. 56, 186–200 (2013). PubMed

Dick G., et al. , Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J. Biol. Chem. 288, 27384–27395 (2013). PubMed PMC

Kantor D. B., et al. , Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–975 (2004). PubMed

McGough I. J., et al. , Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature 585, 85–90 (2020). PubMed PMC

Maccarana M., Sakura Y., Tawada A., Yoshida K., Lindahl U., Domain structure of heparan sulfates from bovine organs. J. Biol. Chem. 271, 17804–17810 (1996). PubMed

Esko J. D., Stewart T. E., Taylor W. H., Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 82, 3197–3201 (1985). PubMed PMC

Lidholt K., et al. , A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 89, 2267–2271 (1992). PubMed PMC

Rozbesky D., et al. , Diversity of oligomerization in Drosophila semaphorins suggests a mechanism of functional fine-tuning. Nat. Commun. 10, 3691 (2019). PubMed PMC

Janssen B. J., et al. , Structural basis of semaphorin-plexin signalling. Nature 467, 1118–1122 (2010). PubMed PMC

Lu D., Shang G., He X., Bai X. C., Zhang X., Architecture of the Sema3A/PlexinA4/Neuropilin tripartite complex. Nat. Commun. 12, 3172 (2021). PubMed PMC

Rozbesky D., et al. , Structural basis of semaphorin-plexin cis interaction. EMBO J. 39, e102926 (2020). PubMed PMC

Jumper J., et al. , Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed PMC

Perez Y., et al. , Semaphorin 3A-glycosaminoglycans interaction as therapeutic target for axonal regeneration. Pharmaceuticals (Basel) 14, 906 (2021). PubMed PMC

Guo H. F., et al. , Mechanistic basis for the potent anti-angiogenic activity of semaphorin 3F. Biochemistry 52, 7551–7558 (2013). PubMed PMC

Yan D., Lin X., Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 1, a002493 (2009). PubMed PMC

Joo W. J., Sweeney L. B., Liang L., Luo L., Linking cell fate, trajectory choice, and target selection: Genetic analysis of Sema-2b in olfactory axon targeting. Neuron 78, 673–686 (2013). PubMed PMC

Sweeney L. B., et al. , Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon–axon interactions. Neuron 53, 185–200 (2007). PubMed

Graham G. J., Handel T. M., Proudfoot A. E. I., Leukocyte adhesion: Reconceptualizing chemokine presentation by glycosaminoglycans. Trends Immunol. 40, 472–481 (2019). PubMed

Cajal S. R. Y., La rétine des vertébrés. La Cellule 9, 119–257 (1893).

Luo Y., Raible D., Raper J. A., Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993). PubMed

Raper J. A., Kapfhammer J. P., The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron 4, 21–29 (1990). PubMed

Wu Z., et al. , A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 70, 281–298 (2011). PubMed PMC

Kennedy T. E., Serafini T., de la Torre J. R., Tessier-Lavigne M., Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994). PubMed

Deiner M. S., et al. , Netrin-1 and DCC mediate axon guidance locally at the optic disc: Loss of function leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997). PubMed

Brankatschk M., Dickson B. J., Netrins guide Drosophila commissural axons at short range. Nat. Neurosci. 9, 188–194 (2006). PubMed

Timofeev K., Joly W., Hadjieconomou D., Salecker I., Localized netrins act as positional cues to control layer-specific targeting of photoreceptor axons in Drosophila. Neuron 75, 80–93 (2012). PubMed PMC

Akin O., Zipursky S. L., Frazzled promotes growth cone attachment at the source of a Netrin gradient in the Drosophila visual system. eLife 5, e20762 (2016). PubMed PMC

Varadarajan S. G., Butler S. J., Netrin1 establishes multiple boundaries for axon growth in the developing spinal cord. Dev. Biol. 430, 177–187 (2017). PubMed PMC

Wu Z., et al. , Long-range guidance of spinal commissural axons by Netrin1 and Sonic Hedgehog from midline floor plate cells. Neuron 101, 635–647.e634 (2019). PubMed

Adams R. H., Lohrum M., Klostermann A., Betz H., Puschel A. W., The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO J. 16, 6077–6086 (1997). PubMed PMC

Parker M. W., Hellman L. M., Xu P., Fried M. G., Vander Kooi C. W., Furin processing of semaphorin 3F determines its anti-angiogenic activity by regulating direct binding and competition for neuropilin. Biochemistry 49, 4068–4075 (2010). PubMed PMC

Varshavsky A., et al. , Semaphorin-3B is an angiogenesis inhibitor that is inactivated by furin-like pro-protein convertases. Cancer Res. 68, 6922–6931 (2008). PubMed

Djerbal L., et al. , Semaphorin 3A binding to chondroitin sulfate E enhances the biological activity of the protein, and cross-links and rigidifies glycosaminoglycan matrices. bioRxiv [Preprint] (2019). 10.1101/851121 (Accessed 17 November 2023). DOI

Sweeney L. B., et al. , Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. Neuron 72, 734–747 (2011). PubMed PMC

Polleux F., Morrow T., Ghosh A., Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000). PubMed

Kennedy T. E., Wang H., Marshall W., Tessier-Lavigne M., Axon guidance by diffusible chemoattractants: A gradient of netrin protein in the developing spinal cord. J. Neurosci. 26, 8866–8874 (2006). PubMed PMC

Komiyama T., Sweeney L. B., Schuldiner O., Garcia K. C., Luo L., Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 128, 399–410 (2007). PubMed

Drescher U., et al. , In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995). PubMed

Cheng H. J., Nakamoto M., Bergemann A. D., Flanagan J. G., Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995). PubMed

Shigetani Y., Funahashi J. I., Nakamura H., En-2 regulates the expression of the ligands for Eph type tyrosine kinases in chick embryonic tectum. Neurosci. Res. 27, 211–217 (1997). PubMed

Scholpp S., Lohs C., Brand M., Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130, 4881–4893 (2003). PubMed

Ornitz D. M., FGFs, heparan sulfate and FGFRs: Complex interactions essential for development. Bioessays 22, 108–112 (2000). PubMed

Elegheert J., et al. , Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 13, 2991–3017 (2018). PubMed PMC

Rozbesky D., et al. , Drosophila OTK is a glycosaminoglycan-binding protein with high conformational flexibility. Structure 28, 507–515 e505 (2020). PubMed PMC

Howarth M., et al. , Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399 (2008). PubMed PMC

Vonrhein C., et al. , Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D, Biol. Crystallogr. 67, 293–302 (2011). PubMed PMC

McCoy A. J., et al. , Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). PubMed PMC

Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. D, Biol. Crystallogr. 60, 2126–2132 (2004). PubMed

Afonine P. V., et al. , Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D, Biol. Crystallogr. 68, 352–367 (2012). PubMed PMC

Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A., Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 (2001). PubMed PMC

Krissinel E., Henrick K., Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). PubMed

Terwilliger T. C., et al. , Iterative-build OMIT maps: Map improvement by iterative model building and refinement without model bias. Acta Crystallogr. D, Biol. Crystallogr. 64, 515–524 (2008). PubMed PMC

Wallace A. C., Laskowski R. A., Thornton J. M., LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995). PubMed

Wu J. S., Luo L., A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat. Protoc. 1, 2110–2115 (2006). PubMed

Nourisanami F., Sobol M., Rozbesky D., Drosophila Semaphorin 2b in complex with glycosaminoglycan mimic SOS. Protein Data Bank. https://www.rcsb.org/structure/8RMJ. Deposited 8 January 2024.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...