Molecular mechanisms of proteoglycan-mediated semaphorin signaling in axon guidance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 DC005982
NIDCD NIH HHS - United States
R01-DC005982
Foundation for the National Institutes of Health (FNIH)
21-27204 M
Czech Science Foundation
PubMed
39042673
PubMed Central
PMC11295036
DOI
10.1073/pnas.2402755121
Knihovny.cz E-zdroje
- Klíčová slova
- Sema2b, axon guidance, glycosaminoglycans, semaphorin, semaphorin bridge model,
- MeSH
- axony metabolismus MeSH
- čichové buňky metabolismus MeSH
- Drosophila melanogaster metabolismus MeSH
- glykosaminoglykany metabolismus MeSH
- navádění axonů * MeSH
- proteiny Drosophily * metabolismus genetika MeSH
- proteoglykany * metabolismus MeSH
- semaforiny * metabolismus genetika MeSH
- signální transdukce * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykosaminoglykany MeSH
- proteiny Drosophily * MeSH
- proteoglykany * MeSH
- semaforiny * MeSH
The precise assembly of a functional nervous system relies on axon guidance cues. Beyond engaging their cognate receptors and initiating signaling cascades that modulate cytoskeletal dynamics, guidance cues also bind components of the extracellular matrix, notably proteoglycans, yet the role and mechanisms of these interactions remain poorly understood. We found that Drosophila secreted semaphorins bind specifically to glycosaminoglycan (GAG) chains of proteoglycans, showing a preference based on the degree of sulfation. Structural analysis of Sema2b unveiled multiple GAG-binding sites positioned outside canonical plexin-binding site, with the highest affinity binding site located at the C-terminal tail, characterized by a lysine-rich helical arrangement that appears to be conserved across secreted semaphorins. In vivo studies revealed a crucial role of the Sema2b C-terminal tail in specifying the trajectory of olfactory receptor neurons. We propose that secreted semaphorins tether to the cell surface through interactions with GAG chains of proteoglycans, facilitating their presentation to cognate receptors on passing axons.
Department of Cell Biology Faculty of Science Charles University Prague 128 43 Czechia
HHMI Department of Biology Stanford University Stanford CA 94305
Zobrazit více v PubMed
Dickson B. J., Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002). PubMed
Fawcett J. W., Kwok J. C. F., Proteoglycan sulphation in the function of the mature central nervous system. Front. Integr. Neurosci. 16, 895493 (2022). PubMed PMC
Wang L., Denburg J. L., A role for proteoglycans in the guidance of a subset of pioneer axons in cultured embryos of the cockroach. Neuron 8, 701–714 (1992). PubMed
Irie A., Yates E. A., Turnbull J. E., Holt C. E., Specific heparan sulfate structures involved in retinal axon targeting. Development 129, 61–70 (2002). PubMed
Walz A., et al. , Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 124, 2421–2430 (1997). PubMed
Inatani M., Irie F., Plump A. S., Tessier-Lavigne M., Yamaguchi Y., Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302, 1044–1046 (2003). PubMed
Pratt T., Conway C. D., Tian N. M., Price D. J., Mason J. O., Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J. Neurosci. 26, 6911–6923 (2006). PubMed PMC
Johnson K. G., et al. , Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance. Curr. Biol. 14, 499–504 (2004). PubMed
Steigemann P., Molitor A., Fellert S., Jackle H., Vorbruggen G., Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling. Curr. Biol. 14, 225–230 (2004). PubMed
Cho J. Y., Chak K., Andreone B. J., Wooley J. R., Kolodkin A. L., The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev. 26, 2222–2235 (2012). PubMed PMC
Bulow H. E., Hobert O., Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41, 723–736 (2004). PubMed
Holt C. E., Dickson B. J., Sugar codes for axons? Neuron 46, 169–172 (2005). PubMed PMC
Pasterkamp R. J., Getting neural circuits into shape with semaphorins. Nat. Rev. Neurosci. 13, 605–618 (2012). PubMed
De Wit J., De Winter F., Klooster J., Verhaagen J., Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol. Cell Neurosci. 29, 40–55 (2005). PubMed
Vo T., et al. , The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol. Cell Neurosci. 56, 186–200 (2013). PubMed
Dick G., et al. , Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J. Biol. Chem. 288, 27384–27395 (2013). PubMed PMC
Kantor D. B., et al. , Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–975 (2004). PubMed
McGough I. J., et al. , Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature 585, 85–90 (2020). PubMed PMC
Maccarana M., Sakura Y., Tawada A., Yoshida K., Lindahl U., Domain structure of heparan sulfates from bovine organs. J. Biol. Chem. 271, 17804–17810 (1996). PubMed
Esko J. D., Stewart T. E., Taylor W. H., Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 82, 3197–3201 (1985). PubMed PMC
Lidholt K., et al. , A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 89, 2267–2271 (1992). PubMed PMC
Rozbesky D., et al. , Diversity of oligomerization in Drosophila semaphorins suggests a mechanism of functional fine-tuning. Nat. Commun. 10, 3691 (2019). PubMed PMC
Janssen B. J., et al. , Structural basis of semaphorin-plexin signalling. Nature 467, 1118–1122 (2010). PubMed PMC
Lu D., Shang G., He X., Bai X. C., Zhang X., Architecture of the Sema3A/PlexinA4/Neuropilin tripartite complex. Nat. Commun. 12, 3172 (2021). PubMed PMC
Rozbesky D., et al. , Structural basis of semaphorin-plexin cis interaction. EMBO J. 39, e102926 (2020). PubMed PMC
Jumper J., et al. , Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed PMC
Perez Y., et al. , Semaphorin 3A-glycosaminoglycans interaction as therapeutic target for axonal regeneration. Pharmaceuticals (Basel) 14, 906 (2021). PubMed PMC
Guo H. F., et al. , Mechanistic basis for the potent anti-angiogenic activity of semaphorin 3F. Biochemistry 52, 7551–7558 (2013). PubMed PMC
Yan D., Lin X., Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 1, a002493 (2009). PubMed PMC
Joo W. J., Sweeney L. B., Liang L., Luo L., Linking cell fate, trajectory choice, and target selection: Genetic analysis of Sema-2b in olfactory axon targeting. Neuron 78, 673–686 (2013). PubMed PMC
Sweeney L. B., et al. , Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon–axon interactions. Neuron 53, 185–200 (2007). PubMed
Graham G. J., Handel T. M., Proudfoot A. E. I., Leukocyte adhesion: Reconceptualizing chemokine presentation by glycosaminoglycans. Trends Immunol. 40, 472–481 (2019). PubMed
Cajal S. R. Y., La rétine des vertébrés. La Cellule 9, 119–257 (1893).
Luo Y., Raible D., Raper J. A., Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993). PubMed
Raper J. A., Kapfhammer J. P., The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron 4, 21–29 (1990). PubMed
Wu Z., et al. , A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 70, 281–298 (2011). PubMed PMC
Kennedy T. E., Serafini T., de la Torre J. R., Tessier-Lavigne M., Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994). PubMed
Deiner M. S., et al. , Netrin-1 and DCC mediate axon guidance locally at the optic disc: Loss of function leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997). PubMed
Brankatschk M., Dickson B. J., Netrins guide Drosophila commissural axons at short range. Nat. Neurosci. 9, 188–194 (2006). PubMed
Timofeev K., Joly W., Hadjieconomou D., Salecker I., Localized netrins act as positional cues to control layer-specific targeting of photoreceptor axons in Drosophila. Neuron 75, 80–93 (2012). PubMed PMC
Akin O., Zipursky S. L., Frazzled promotes growth cone attachment at the source of a Netrin gradient in the Drosophila visual system. eLife 5, e20762 (2016). PubMed PMC
Varadarajan S. G., Butler S. J., Netrin1 establishes multiple boundaries for axon growth in the developing spinal cord. Dev. Biol. 430, 177–187 (2017). PubMed PMC
Wu Z., et al. , Long-range guidance of spinal commissural axons by Netrin1 and Sonic Hedgehog from midline floor plate cells. Neuron 101, 635–647.e634 (2019). PubMed
Adams R. H., Lohrum M., Klostermann A., Betz H., Puschel A. W., The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO J. 16, 6077–6086 (1997). PubMed PMC
Parker M. W., Hellman L. M., Xu P., Fried M. G., Vander Kooi C. W., Furin processing of semaphorin 3F determines its anti-angiogenic activity by regulating direct binding and competition for neuropilin. Biochemistry 49, 4068–4075 (2010). PubMed PMC
Varshavsky A., et al. , Semaphorin-3B is an angiogenesis inhibitor that is inactivated by furin-like pro-protein convertases. Cancer Res. 68, 6922–6931 (2008). PubMed
Djerbal L., et al. , Semaphorin 3A binding to chondroitin sulfate E enhances the biological activity of the protein, and cross-links and rigidifies glycosaminoglycan matrices. bioRxiv [Preprint] (2019). 10.1101/851121 (Accessed 17 November 2023). DOI
Sweeney L. B., et al. , Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. Neuron 72, 734–747 (2011). PubMed PMC
Polleux F., Morrow T., Ghosh A., Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000). PubMed
Kennedy T. E., Wang H., Marshall W., Tessier-Lavigne M., Axon guidance by diffusible chemoattractants: A gradient of netrin protein in the developing spinal cord. J. Neurosci. 26, 8866–8874 (2006). PubMed PMC
Komiyama T., Sweeney L. B., Schuldiner O., Garcia K. C., Luo L., Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 128, 399–410 (2007). PubMed
Drescher U., et al. , In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995). PubMed
Cheng H. J., Nakamoto M., Bergemann A. D., Flanagan J. G., Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995). PubMed
Shigetani Y., Funahashi J. I., Nakamura H., En-2 regulates the expression of the ligands for Eph type tyrosine kinases in chick embryonic tectum. Neurosci. Res. 27, 211–217 (1997). PubMed
Scholpp S., Lohs C., Brand M., Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130, 4881–4893 (2003). PubMed
Ornitz D. M., FGFs, heparan sulfate and FGFRs: Complex interactions essential for development. Bioessays 22, 108–112 (2000). PubMed
Elegheert J., et al. , Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 13, 2991–3017 (2018). PubMed PMC
Rozbesky D., et al. , Drosophila OTK is a glycosaminoglycan-binding protein with high conformational flexibility. Structure 28, 507–515 e505 (2020). PubMed PMC
Howarth M., et al. , Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399 (2008). PubMed PMC
Vonrhein C., et al. , Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D, Biol. Crystallogr. 67, 293–302 (2011). PubMed PMC
McCoy A. J., et al. , Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). PubMed PMC
Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. D, Biol. Crystallogr. 60, 2126–2132 (2004). PubMed
Afonine P. V., et al. , Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D, Biol. Crystallogr. 68, 352–367 (2012). PubMed PMC
Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A., Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 (2001). PubMed PMC
Krissinel E., Henrick K., Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). PubMed
Terwilliger T. C., et al. , Iterative-build OMIT maps: Map improvement by iterative model building and refinement without model bias. Acta Crystallogr. D, Biol. Crystallogr. 64, 515–524 (2008). PubMed PMC
Wallace A. C., Laskowski R. A., Thornton J. M., LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995). PubMed
Wu J. S., Luo L., A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat. Protoc. 1, 2110–2115 (2006). PubMed
Nourisanami F., Sobol M., Rozbesky D., Drosophila Semaphorin 2b in complex with glycosaminoglycan mimic SOS. Protein Data Bank. https://www.rcsb.org/structure/8RMJ. Deposited 8 January 2024.