Zygotic spindle orientation defines cleavage pattern and nuclear status of human embryos
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39075061
PubMed Central
PMC11286845
DOI
10.1038/s41467-024-50732-z
PII: 10.1038/s41467-024-50732-z
Knihovny.cz E-zdroje
- MeSH
- aparát dělícího vřeténka * metabolismus MeSH
- buněčné jádro * metabolismus MeSH
- embryo savčí cytologie MeSH
- embryonální vývoj * MeSH
- fertilizace in vitro MeSH
- lidé MeSH
- mitóza * MeSH
- stadium rýhování vajíčka cytologie MeSH
- zygota * metabolismus cytologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The first embryonic division represents a starting point for the development of a new individual. In many species, tight control over the first embryonic division ensures its accuracy. However, the first division in humans is often erroneous and can impair embryo development. To delineate the spatiotemporal organization of the first mitotic division typical for normal human embryo development, we systematically analyzed a unique timelapse dataset of 300 IVF embryos that developed into healthy newborns. The zygotic division pattern of these best-quality embryos was compared to their siblings that failed to implant or arrested during cleavage stage. We show that division at the right angle to the juxtaposed pronuclei is preferential and supports faithful zygotic division. Alternative configurations of the first mitosis are associated with reduced clustering of nucleoli and multinucleation at the 2-cell stage, which are more common in women of advanced age. Collectively, these data imply that orientation of the first division predisposes human embryos to genetic (in)stability and may contribute to aneuploidy and age-related infertility.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Reprofit International Clinic of Reproductive Medicine Brno Czech Republic
Zobrazit více v PubMed
Cha, B.-J., Serbus, L. R., Koppetsch, B. S. & Theurkauf, W. E. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat. Cell Biol.4, 592–598 (2002). 10.1038/ncb832 PubMed DOI
Goldstein, B. & Hird, S. N. Specification of the anteroposterior axis in Caenorhabditis elegans. Development122, 1467–1474 (1996). 10.1242/dev.122.5.1467 PubMed DOI
Kikkawa, M., Takano, K. & Shinagawa, A. Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs. Development122, 3687–3696 (1996). 10.1242/dev.122.12.3687 PubMed DOI
Hiiragi, T. & Solter, D. First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature430, 360–364 (2004). 10.1038/nature02595 PubMed DOI
Louvet-Vallée, S., Vinot, S. & Maro, B. Mitotic spindles and cleavage planes are oriented randomly in the two-cell mouse embryo. Curr. Biol.15, 464–469 (2005). 10.1016/j.cub.2004.12.078 PubMed DOI
Plusa, B., Grabarek, J. B., Piotrowska, K., Glover, D. M. & Zernicka-Goetz, M. Site of the previous meiotic division defines cleavage orientation in the mouse embryo. Nat. Cell Biol.4, 811–815 (2002). 10.1038/ncb860 PubMed DOI
Plusa, B., Piotrowska, K. & Zernicka-Goetz, M. Sperm entry position provides a surface marker for the first cleavage plane of the mouse zygote. Genesis32, 193–198 (2002). 10.1002/gene.10027 PubMed DOI
Currie, C. E. et al. The first mitotic division of human embryos is highly error prone. Nat. Commun.13, 6755 (2022). 10.1038/s41467-022-34294-6 PubMed DOI PMC
Hardarson, T., Hanson, C., Sjögren, A. & Lundin, K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum. Reprod.16, 313–318 (2001). 10.1093/humrep/16.2.313 PubMed DOI
Wartosch, L. et al. Origins and mechanisms leading to aneuploidy in human eggs. Prenat. Diagn.41, 620–630 (2021). 10.1002/pd.5927 PubMed DOI PMC
Daughtry, B. L. et al. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res.29, 367–382 (2019). 10.1101/gr.239830.118 PubMed DOI PMC
Gruhn, J. R. et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science365, 1466–1469 (2019). 10.1126/science.aav7321 PubMed DOI PMC
Scott, L. Pronuclear scoring as a predictor of embryo development. Reprod. Biomed. Online6, 201–214 (2003). 10.1016/S1472-6483(10)61711-7 PubMed DOI
Gámiz, P. et al. The effect of pronuclear morphology on early development and chromosomal abnormalities in cleavage‐stage embryos. Hum. Reprod.18, 2413–2419 (2003). 10.1093/humrep/deg458 PubMed DOI
Gardner, R. L. Specification of embryonic axes begins before cleavage in normal mouse development. Development128, 839–847 (2001). 10.1242/dev.128.6.839 PubMed DOI
Gardner, R. L. & Davies, T. J. An investigation of the origin and significance of bilateral symmetry of the pronuclear zygote in the mouse. Hum. Reprod.21, 492–502 (2006). 10.1093/humrep/dei318 PubMed DOI
Garello, C. et al. Pronuclear orientation, polar body placement, and embryo quality after intracytoplasmic sperm injection and in-vitro fertilization: further evidence for polarity in human oocytes? Hum. Reprod.14, 2588–2595 (1999). 10.1093/humrep/14.10.2588 PubMed DOI
Payne, D., Flaherty, S. P., Barry, M. F. & Matthews, C. D. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum. Reprod.12, 532–541 (1997). 10.1093/humrep/12.3.532 PubMed DOI
Gianaroli, L., Magli, M. C., Ferraretti, A. P., Fortini, D. & Grieco, N. Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selection. Fertil. Steril.80, 341–349 (2003). 10.1016/S0015-0282(03)00596-X PubMed DOI
Tesarik, J. & Greco, E. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum. Reprod.14, 1318–1323 (1999). 10.1093/humrep/14.5.1318 PubMed DOI
Coticchio, G., Borini, A., Zacà, C., Makrakis, E. & Sfontouris, I. Fertilization signatures as biomarkers of embryo quality. Hum. Reprod.37, deac123 (2022).10.1093/humrep/deac123 PubMed DOI
Inoue, T. et al. The migration speed of nucleolar precursor bodies in pronuclei affects in vitro fertilization-derived human embryo ploidy status and live birth. Reprod. Med. Biol.22, e12497 (2023). 10.1002/rmb2.12497 PubMed DOI PMC
Cavazza, T. et al. Parental genome unification is highly error-prone in mammalian embryos. Cell184, 2860–2877.e22 (2021). 10.1016/j.cell.2021.04.013 PubMed DOI PMC
Ottolini, C. S. et al. Tripolar mitosis and partitioning of the genome arrests human preimplantation development in vitro. Sci. Rep.7, 9744 (2017). 10.1038/s41598-017-09693-1 PubMed DOI PMC
Fenwick, J. Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum. Reprod.17, 407–412 (2002). 10.1093/humrep/17.2.407 PubMed DOI
Lundin, K., Bergh, C. & Hardarson, T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum. Reprod.16, 2652–2657 (2001). 10.1093/humrep/16.12.2652 PubMed DOI
Sakkas, D., Shoukir, Y., Chardonnens, D., Bianchi, P. G. & Campana, A. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum. Reprod.13, 182–187 (1998). 10.1093/humrep/13.1.182 PubMed DOI
Vázquez-Diez, C., Paim, L. M. G. & FitzHarris, G. Cell-size-independent spindle checkpoint failure underlies chromosome segregation error in mouse embryos. Curr. Biol.29, 865–873.e3 (2019). 10.1016/j.cub.2018.12.042 PubMed DOI
Paim, L. M. G. & FitzHarris, G. Tetraploidy causes chromosomal instability in acentriolar mouse embryos. Nat. Commun.10, 4834 (2019). 10.1038/s41467-019-12772-8 PubMed DOI PMC
McCollin, A., Swann, R. L., Summers, M. C., Handyside, A. H. & Ottolini, C. S. Abnormal cleavage and developmental arrest of human preimplantation embryos in vitro. Eur. J. Med. Genet.63, 103651 (2020). 10.1016/j.ejmg.2019.04.008 PubMed DOI
Kai, Y., Kawano, H. & Yamashita, N. First mitotic spindle formation is led by sperm centrosome-dependent MTOCs in humans. Reproduction161, V19–V22 (2021). 10.1530/REP-21-0061 PubMed DOI
Hashimoto, S. et al. Multinucleation per se is not always sufficient as a marker of abnormality to decide against transferring human embryos. Fertil. Steril.106, 133–139.e6 (2016). 10.1016/j.fertnstert.2016.03.025 PubMed DOI
Ono, Y. et al. Shape of the first mitotic spindles impacts nucleation in human embryos. Nat. Commun.15, 5381 (2024). PubMed PMC
Daphnis, D. D. et al. Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Hum. Reprod.20, 129–137 (2005). 10.1093/humrep/deh554 PubMed DOI
Kligman, I., Benadiva, C., Alikani, M. & Munné, S. Fertilization and early embryology: the presence of multinucleated blastomerés in human embryos is correlated with chromosomal abnormalities. Hum. Reprod.11, 1492–1498 (1996). 10.1093/oxfordjournals.humrep.a019424 PubMed DOI
Staessen, C. & Van Steirteghem, A. The genetic constitution of multinuclear blastomeres and their derivative daughter blastomeres. Hum. Reprod.13, 1625–1631 (1998). 10.1093/humrep/13.6.1625 PubMed DOI
McCoy, R. C. et al. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med.15, 77 (2023). 10.1186/s13073-023-01231-1 PubMed DOI PMC
Fishman, E. L. et al. A novel atypical sperm centriole is functional during human fertilization. Nat. Commun.9, 2210 (2018). 10.1038/s41467-018-04678-8 PubMed DOI PMC
Alvarez, N. S., Brachova, P. & Christenson, L. K. Codon composition in human oocytes reveals age-associated defects in mRNA decay. Preprint at bioRxiv10.1101/2021.01.05.425501 (2021).