Probiotic, fructooligosaccharide and yeast extract mixture improves gut health in rainbow trout, Oncorhynchus mykiss

. 2025 Jan ; 109 (1) : 1-12. [epub] 20240802

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu klinické zkoušky veterinární, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39093558

The present study investigated the effects of a feed additive (FA) containing a probiotic consortium, fructooligosaccharide and yeast extract on growth performance, humoral immune responses, hepatic antioxidant parameters and intestine digestive enzymes, morphology and transcripts in rainbow trout, Oncorhynchus mykiss. The fish were reared for 8 weeks, feeding on diets containing 0 (CNT), 0.3 (0.3FA), 1 (1FA) and 2 (2FA) g/kg FA. The results showed that fish growth parameters were significantly and quadratically related to FA levels and FA treatments had better growth performance than CNT treatment. Intestinal amylase activity significantly increased in 2FA, whereas, intestinal protease activity increased in all FA treatments. Intestinal villus length and muscular layer thickness significantly increased in 0.3FA treatment. Blood leucocyte and lymphocyte counts, plasma lysozyme activity and hepatic glutathione content significantly increased in 0.3FA and 1FA treatments; whereas hepatic malondialdehyde significantly decreased in these treatments. Blood neutrophil and monocyte counts significantly increased in 0.3FA treatment, while plasma alternative complement activity significantly increased in 1FA treatments. Plasma bactericidal activities against Aeromonas hydrophila, Yersinia ruckeri and Streptococcus iniae, and intestinal expression of heat shock protein 70 and beta-defensin significantly increased in all FA treatments. The abundance of A. hydrophila, Y. ruckeri and S. iniae in fish gut significantly decreased in 0.3FA treatment; these bacteria were absent in the intestines of 1FA and 2FA treatments. The present results suggest that dietary 0.3-1 g/kg of FA can significantly improve growth performance, immune response, intestinal health and hepatic antioxidant capacity in rainbow trout.

Zobrazit více v PubMed

Abdel‐Latif, H. M. R., Chaklader, M. R., Shukry, M., Ahmed, H. A., & Khallaf, M. A. (2023). A multispecies probiotic modulates growth, digestive enzymes, immunity, hepatic antioxidant activity, and disease resistance of Pangasianodon hypophthalmus fingerlings. Aquaculture, 563, 738948. https://doi.org/10.1016/j.aquaculture.2022.738948

Ainsworth, A. J. (1992). Fish granulocytes: Morphology, distribution, and function. Annual Review of Fish Diseases, 2, 123–148. https://doi.org/10.1016/0959-8030(92)90060-B

Akbari Nargesi, E., Falahatkar, B., & Mohammadi, M. (2019). Growth performance and hematological indices in rainbow trout (Oncorhynchus mykiss): Exclusive study of probiotic effect on male broodstock. Iranian Scientific Fisheries Journal, 28, 101–112.

Akbari Nargesi, E., Falahatkar, B., & Sajjadi, M. (2018). The effect of probiotic on growth performance and hematological indices in female rainbow trout (Oncorhynchus mykiss) broodstock. Journal of Aquatic Ecology, 8, 51–60.

Akter, M. N., Hashim, R., Sutriana, A., Siti Azizah, M. N., & Asaduzzaman, M. (2019). Effect of Lactobacillus acidophilus supplementation on growth performances, digestive enzyme activities and gut histomorphology of striped catfish (Pangasianodon hypophthalmus Sauvage, 1878) juveniles. Aquaculture Research, 50, 786–797. https://doi.org/10.1111/are.13938

Andrews, S. R., Sahu, N. P., Pal, A. K., Mukherjee, S. C., & Kumar, S. (2011). Yeast extract, brewer's yeast and spirulina in diets for Labeo rohita fingerlings affect haemato‐immunological responses and survival following Aeromonas hydrophila challenge. Research in Veterinary Science, 91, 103–109. https://doi.org/10.1016/j.rvsc.2010.08.009

AOAC. (2005). Official methods of analysis of the Association of Official Analytical Chemists.

Bavia, L., Santiesteban‐Lores, L. E., Carneiro, M. C., & Prodocimo, M. M. (2022). Advances in the complement system of a teleost fish, Oreochromis niloticus. Fish & Shellfish Immunology, 123, 61–74. https://doi.org/10.1016/j.fsi.2022.02.013

Biller, J. D., & Takahashi, L. S. (2018). Oxidative stress and fish immune system: Phagocytosis and leukocyte respiratory burst activity. Anais da Academia Brasileira de Ciências, 90, 3403–3414. https://doi.org/10.1590/0001-3765201820170730

Blaxhall, P. C. (1972). The haematological assessment of the health of freshwater fish. Journal of Fish Biology, 4, 593–604. https://doi.org/10.1111/j.1095-8649.1972.tb05704.x

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. In S. Fleischer & L. Packer (Eds.), Methods in enzymology (pp. 302–310). Academic Press.

Bye, J. W., Cowieson, N. P., Cowieson, A. J., Selle, P. H., & Falconer, R. J. (2013). Dual effects of sodium phytate on the structural stability and solubility of proteins. Journal of Agricultural and Food Chemistry, 61, 290–295. https://doi.org/10.1021/jf303926v

Chen, D.‐D., Li, J.‐H., Yao, Y.‐Y., & Zhang, Y.‐A. (2019). Aeromonas hydrophila suppresses complement pathways via degradation of complement C3 in bony fish by metalloprotease. Fish & Shellfish Immunology, 94, 739–745. https://doi.org/10.1016/j.fsi.2019.09.057

Ciji, A., & Akhtar, M. S. (2021). Stress management in aquaculture: A review of dietary interventions. Reviews in Aquaculture, 13, 2190–2247. https://doi.org/10.1111/raq.12565

Cordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S., & Minciullo, P. L. (2023). Malondialdehyde as a potential oxidative stress marker for allergy‐oriented diseases: An update. Molecules, 28, 5979. https://doi.org/10.3390/molecules28165979

Dawood, M. A. O., Magouz, F. I., Salem, M. F. I., Elbialy, Z. I., & Abdel‐Daim, H. A. (2020). Synergetic effects of Lactobacillus plantarum and β‐glucan on digestive enzyme activity, intestinal morphology, growth, fatty acid, and glucose‐related gene expression of genetically improved farmed tilapia. Probiotics and antimicrobial proteins, 12, 389–399. https://doi.org/10.1007/s12602-019-09552-7

Dong, J.‐J., Wu, F., Ye, X., Sun, C.‐F., Tian, Y.‐Y., Lu, M.‐X., Zhang, R., & Chen, Z.‐H. (2015). β‐Defensin in Nile tilapia (Oreochromis niloticus): Sequence, tissue expression, and anti‐bacterial activity of synthetic peptides. Gene, 566, 23–31. https://doi.org/10.1016/j.gene.2015.04.025

Dong, R., Zhou, C., Wang, S., Yan, Y., & Jiang, Q. (2022). Probiotics ameliorate polyethylene microplastics‐induced liver injury by inhibition of oxidative stress in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 130, 261–272. https://doi.org/10.1016/j.fsi.2022.09.022

Ellis, A. E. (1990). Lysozyme assays. In J. S. Stolen (Ed.), Techniques in fish immunology (pp. 101–103). SOS publication.

Encarnação, P. (2016). 5—Functional feed additives in aquaculture feeds. In S. F. Nates (Ed.), Aquafeed formulation (pp. 217–237). Academic Press.

Frohn, L., Peixoto, D., Guyomar, C., Teixeira, C., Terrier, F., Aguirre, P., Maman Haddad, S., Bobe, J., Costas, B., & Richard, N. (2024). Yeast extract improves growth in rainbow trout (Oncorhynchus mykiss) fed a fishmeal‐free diet and modulates the hepatic and distal intestine transcriptomic profile. Aquaculture, 579, 740226.

Furné, M., Hidalgo, M. C., López, A., García‐Gallego, M., Morales, A. E., Domezain, A., Domezainé, J., & Sanz, A. (2005). Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture, 250, 391–398. https://doi.org/10.1016/j.aquaculture.2005.05.017

Galano, A., & Alvarez‐Idaboy, J. R. (2011). Glutathione: Mechanism and kinetics of its non‐enzymatic defense action against free radicals. RSC Advances, 1, 1763–1771. https://doi.org/10.1039/c1ra00474c

Giri, S. S., Kim, S. G., Woo, K. J., Jung, W. J., Lee, S. B., Lee, Y. M., Jo, S. J., Hwang, M. H., Park, J., Kim, J. H., V, S., & Park, S. C. (2023). Effects of Bougainvillea glabra leaf on growth, skin mucosal immune responses, and disease resistance in common carp Cyprinus carpio. Fish & Shellfish Immunology, 132, 108514. https://doi.org/10.1016/j.fsi.2022.108514

Gong, Y., Yang, F., Hu, J., Liu, C., Liu, H., Han, D., Jin, J., Yang, Y., Zhu, X., Yi, J., & Xie, S. (2019). Effects of dietary yeast hydrolysate on the growth, antioxidant response, immune response and disease resistance of largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology, 94, 548–557. https://doi.org/10.1016/j.fsi.2019.09.044

Guerreiro, I., Oliva‐Teles, A., & Enes, P. (2018). Prebiotics as functional ingredients: Focus on Mediterranean fish aquaculture. Reviews in Aquaculture, 10, 800–832. https://doi.org/10.1111/raq.12201

Hoseini, S. M., Rajabiesterabadi, H., Abbasi, M., Khosraviani, K., Hoseinifar, S. H., & Van Doan, H. (2022). Modulation of humoral immunological and antioxidant responses and gut bacterial community and gene expression in rainbow trout, Oncorhynchus mykiss, by dietary lactic acid supplementation. Fish and Shellfish Immunology, 125, 26–34.

Hoseini, S. M., Yousefi, M., Afzali‐Kordmahalleh, A., Pagheh, E., & Taheri Mirghaed, A. (2023). Effects of dietary lactic acid supplementation on the activity of digestive and antioxidant enzymes, gene expressions, and bacterial communities in the intestine of common carp “Cyprinus Carpio”. Animals, 13, 1934.

Hoseinifar, S. H., Yousefi, S., Van Doan, H., Ashouri, G., Gioacchini, G., Maradonna, F., & Carnevali, O. (2021). Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Reviews in Fisheries Science & Aquaculture, 29, 198–217.

Hoseinifar, S. H., Sun, Y.‐Z., Wang, A., & Zhou, Z. (2018). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in Microbiology, 9, 2429. https://doi.org/10.3389/fmicb.2018.02429

Huang, K.‐C., Lee, J.‐W., Hu, Y.‐F., Ballantyne, R., & Liu, C.‐H. (2023). Effects of Aspergillus‐meal prebiotic diet on the growth performance, health status and gut microbiota of Asian seabass, Lates calcarifer. Fish & Shellfish Immunology, 136, 108696. https://doi.org/10.1016/j.fsi.2023.108696

Jarmołowicz, S., Rożyński, M., Kowalska, A., & Zakęś, Z. (2018). Growth in juvenile pikeperch (Sander lucioperca L.) stimulated with yeast, Saccharomyces cerevisiae, extract. Aquaculture Research, 49, 614–620. https://doi.org/10.1111/are.13490

Jiang, H., Hu, Y., Wei, X., Xiao, X., Jakovlić, I., Liu, X., Su, J., & Yuan, G. (2018). Chemotactic effect of β‐defensin 1 on macrophages in Megalobrama amblycephala. Fish & Shellfish Immunology, 74, 35–42. https://doi.org/10.1016/j.fsi.2017.12.016

Jobling, M., Alanärä, A., Noble, C., Sánchez‐Vázquez, J., Kadri, S., & Huntingford, F. (2012). Appetite and feed intake. In F. Huntingford, M. Jobling, & S. Kadri (Eds.), Aquaculture and behavior (pp. 183–219). Blackwell Publishing.

Kłosowski, G., Mikulski, D., & Jankowiak, O. (2018). Extracellular phytase production by the wine yeast S. cerevisiae (Finarome Strain) during submerged fermentation. Molecules, 23, 848. https://doi.org/10.3390/molecules23040848

Koca, S. B., Yigit, N. Ö., Didinen, B. I., Metin, S., Bayrak, H., Onuk, E. E., İlhan, İ., Eralp, H., & Diler, İ. (2015). Effects of enzyme‐producing probiotic bacteria isolated from the gastrointestinal tract of trout on the growth performance, survival, and digestive enzyme activity of rainbow trout fry (Oncorhynchus mykiss). Israeli Journal of Aquaculture—Bamidgeh, 67, 1–9. https://doi.org/10.46989/001c.20695

Li, K., Li, W., Chen, X., Luo, T., Mu, Y., & Chen, X. (2021). Molecular and functional identification of a β‐defensin homolog in large yellow croaker (Larimichthys crocea). Journal of Fish Diseases, 44, 391–400. https://doi.org/10.1111/jfd.13324

Liu, W., Ren, P., He, S., Xu, L., Yang, Y., Gu, Z., & Zhou, Z. (2013). Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains. Fish & Shellfish Immunology, 35, 54–62. https://doi.org/10.1016/j.fsi.2013.04.010

Liu, Z.‐Y., Yang, H.‐L., Wei, C.‐Y., Cai, G.‐H., Ye, J.‐D., Zhang, C.‐X., & Sun, Y.‐Z. (2023). Commensal Bacillus siamensis LF4 induces antimicrobial peptides expression via TLRs and NLRs signaling pathways in intestinal epithelial cells of Lateolabrax maculatus. Fish & Shellfish Immunology, 134, 108634. https://doi.org/10.1016/j.fsi.2023.108634

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408. https://doi.org/10.1006/meth.2001.1262

Lu, X.‐J., & Chen, J. (2019). Specific function and modulation of teleost monocytes/macrophages: Polarization and phagocytosis. Zoological Research, 40, 146–150. https://doi.org/10.24272/j.issn.2095-8137.2019.035

Marklund, S. L. (2018). Pyrogallol autoxidation. In R. Greenwald (Ed.), Handbook methods for oxygen radical research (pp. 243–248). CRC press.

Medina‐Félix, D., Garibay‐Valdez, E., Vargas‐Albores, F., & Martínez‐Porchas, M. (2023). Fish disease and intestinal microbiota: A close and indivisible relationship. Reviews in Aquaculture, 15, 820–839. https://doi.org/10.1111/raq.12762

Merrifield, D. L., Bradley, G., Baker, R. T. M., & Davies, S. J. (2010). Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquaculture Nutrition, 16, 496–503.

Merrifield, D. L., Dimitroglou, A., Bradley, G., Baker, R. T. M., & Davies, S. J. (2010). Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) I. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria. Aquaculture Nutrition, 16, 504–510.

Mirbakhsh, M., Ghaednia, B., & Tabatabaee Bafroee, A. S. (2022). An in vivo and in vitro assessment of the probiotic potentials of indigenous halotolerant bacteria on growth performance and digestive enzymes of white leg shrimp (Litopenaeus vannamei) in high‐salinity waters. Aquaculture Nutrition, 2022, 1–12. https://doi.org/10.1155/2022/2704224

Mohammadian, T., Nasirpour, M., Tabandeh, M. R., Heidary, A. A., Ghanei‐Motlagh, R., & Hosseini, S. S. (2019). Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish & Shellfish Immunology, 86, 269–279. https://doi.org/10.1016/j.fsi.2018.11.052

Moss, D. V., & Henderson, A. R. (1999). Clinical enzymology. In C. A. Burtis & E. R. Ashwood (Eds.), Tietz textbook of clinical chemistry (pp. 617–677). Saunders.

Naderi Farsani, M., Bahrami Gorji, S., Hoseinifar, S. H., Rashidian, G., & Van Doan, H. (2020). Combined and singular effects of dietary PrimaLac® and potassium diformate (KDF) on growth performance and some physiological parameters of rainbow trout (Oncorhynchus mykiss). Probiotics and Antimicrobial Proteins, 12, 236–245. https://doi.org/10.1007/s12602-019-9523-2

Navarrete, P., & Tovar‐Ramírez, D. (2014). Use of yeasts as probiotics in fish aquaculture. In M. Hernandez‐Vergara & C. Perez‐Rostro (Eds.), Sustainable aquaculture techniques (pp. 135–172). IntechOpen, Rijeka.

Niu, K.‐M., Khosravi, S., Kothari, D., Lee, W.‐D., Lim, J.‐M., Lee, B.‐J., Kim, K.‐W., Lim, S.‐G., Lee, S.‐M., & Kim, S.‐K. (2019). Effects of dietary multi‐strain probiotics supplementation in a low fishmeal diet on growth performance, nutrient utilization, proximate composition, immune parameters, and gut microbiota of juvenile olive flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 93, 258–268. https://doi.org/10.1016/j.fsi.2019.07.056

Osswald, A., Westermann, C., Sun, Z., & Riedel, C. U. (2015). A phytase‐based reporter system for identification of functional secretion signals in bifidobacteria. PLoS One, 10, e0128802. https://doi.org/10.1371/journal.pone.0128802

Ozório, R. O. A., Kopecka‐Pilarczyk, J., Peixoto, M. J., Lochmann, R., Santos, R. J., Santos, G., Weber, B., Calheiros, J., Ferraz‐Arruda, L., Vaz‐Pires, P., & Gonçalves, J. F. M. (2016). Dietary probiotic supplementation in juvenile rainbow trout (Oncorhynchus mykiss) reared under cage culture production: Effects on growth, fish welfare, flesh quality and intestinal microbiota. Aquaculture Research, 47, 2732–2747. https://doi.org/10.1111/are.12724

Park, Y., Kim, H., Won, S., Hamidoghli, A., Hasan, M. T., Kong, I.‐S., & Bai, S. C. (2020). Effects of two dietary probiotics (Bacillus subtilis or licheniformis) with two prebiotics (mannan or fructo oligosaccharide) in Japanese eel, Anguilla japonica. Aquaculture Nutrition, 26, 316–327. https://doi.org/10.1111/anu.12993

Park, Y., Lee, S., Hong, J., Kim, D., Moniruzzaman, M., & Bai, S. C. (2017). Use of probiotics to enhance growth, stimulate immunity and confer disease resistance to Aeromonas salmonicida in rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 48, 2672–2682. https://doi.org/10.1111/are.13099

Paz, A. L., da Silva, J. M., da Silva, K. M. M., & Val, A. L. (2019). Protective effects of the fructooligosaccharide on the growth performance, hematology, immunology indicators and survival of tambaqui (Colossoma macropomum, Characiformes: Serrasalmidae) infected by Aeromonas hydrophila. Aquaculture Reports, 15, 100222. https://doi.org/10.1016/j.aqrep.2019.100222

Pophaly, S. D., Poonam, S., Pophaly, S. D., Kapila, S., Nanda, D. K., Tomar, S. K., & Singh, R. (2017). Glutathione biosynthesis and activity of dependent enzymes in food‐grade lactic acid bacteria harbouring multidomain bifunctional fusion gene (gshF). Journal of Applied Microbiology, 123, 194–203. https://doi.org/10.1111/jam.13471

Ramos, M. A., Gonçalves, J. F. M., Costas, B., Batista, S., Lochmann, R., Pires, M. A., Rema, P., & Ozório, R. O. A. (2017). Commercial Bacillus probiotic supplementation of rainbow trout (Oncorhynchys mykiss) and brown trout (Salmo trutta): Growth, immune responses and intestinal morphology. Aquaculture Research, 48, 2538–2549. https://doi.org/10.1111/are.13090

Ramos, M. A., Weber, B., Gonçalves, J. F., Santos, G. A., Rema, P., & Ozório, R. O. (2013). Dietary probiotic supplementation modulated gut microbiota and improved growth of juvenile rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 166, 302–307. https://doi.org/10.1016/j.cbpa.2013.06.025

Rauta, P. R., Nayak, B., & Das, S. (2012). Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunology Letters, 148, 23–33. https://doi.org/10.1016/j.imlet.2012.08.003

Ringø, E., & Song, S. K. (2016). Application of dietary supplements (synbiotics and probiotics in combination with plant products and β‐glucans) in aquaculture. Aquaculture Nutrition, 22, 4–24. https://doi.org/10.1111/anu.12349

Roberts, R. J., Agius, C., Saliba, C., Bossier, P., & Sung, Y. Y. (2010). Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. Journal of Fish Diseases, 33, 789–801. https://doi.org/10.1111/j.1365-2761.2010.01183.x

Salinas, I., Casadei, E., Takizawa, F., Shibasaki, Y., & Sunyer, O. J. (2018). Interactions between microbiota and the teleost immune system in health and disease. The Journal of Immunology, 200, 53.19. https://doi.org/10.4049/jimmunol.200.Supp.53.19

Salinas, I., Ding, Y., Fernández‐Montero, Á., & Sunyer, J. O. (2022). Mucosal immunity in fish. In K. Buchmann & C. J. Secombes (Eds.), Principles of fish immunology: From cells and molecules to host protection (pp. 387–443). Springer International Publishing.

Selvaraj, V., Sampath, K., & Sekar, V. (2005). Administration of yeast glucan enhances survival and some non‐specific and specific immune parameters in carp (Cyprinus carpio) infected with. Fish & Shellfish Immunology, 19, 293–306. https://doi.org/10.1016/j.fsi.2005.01.001

Sharma, N., Angural, S., Rana, M., Puri, N., Kondepudi, K. K., & Gupta, N. (2020). Phytase producing lactic acid bacteria: Cell factories for enhancing micronutrient bioavailability of phytate rich foods. Trends in Food Science & Technology, 96, 1–12.

Shi, Q., Xiong, X., Wen, Z., Qin, C., Li, R., Zhang, Z., Gong, Q., & Wu, X. (2022). Cu/Zn Superoxide dismutase and catalase of Yangtze sturgeon, Acipenser dabryanus: Molecular cloning, tissue distribution and response to fasting and refeeding. Fishes, 7, 35. https://doi.org/10.3390/fishes7010035

Shoemaker, C., Xu, D.‐H., LaFrentz, B., & LaPatra, S. (2015). Overview of fish immune system and infectious diseases. In C.‐S. Lee, C. Lim, I. I. I. Gatlin, & C. D. Webster (Eds.), Dietary nutrients, additives, and fish health (pp. 1–24). Wiley‐Blackwell.

Siddik, M. A. B., Foysal, M. J., Fotedar, R., Francis, D. S., & Gupta, S. K. (2022). Probiotic yeast Saccharomyces cerevisiae coupled with Lactobacillus casei modulates physiological performance and promotes gut microbiota in juvenile barramundi, Lates calcarifer. Aquaculture, 546, 737346. https://doi.org/10.1016/j.aquaculture.2021.737346

Singh, S. K., Aravamudhan, S., Armant, O., Krüger, M., & Grabher, C. (2014). Proteome dynamics in neutrophils of adult zebrafish upon chemically‐induced inflammation. Fish & Shellfish Immunology, 40, 217–224. https://doi.org/10.1016/j.fsi.2014.06.035

Song, Q., Xiao, Y., Xiao, Z., Liu, T., Li, J., Li, P., & Han, F. (2021). Lysozymes in fish. Journal of Agricultural and Food Chemistry, 69, 15039–15051. https://doi.org/10.1021/acs.jafc.1c06676

Sumon, M. A. A., Sumon, T. A., Hussain, M. A., Lee, S.‐J., Jang, W. J., Sharifuzzaman, S. M., Brown, C. L., Lee, E.‐W., & Hasan, M. T. (2022). Single and multi‐strain probiotics supplementation in commercially prominent finfish aquaculture: Review of the current knowledge. Journal of Microbiology and Biotechnology, 32, 681–698. https://doi.org/10.4014/jmb.2202.02032

Tran, N. T., Li, Z., Wang, S., Zheng, H., Aweya, J. J., Wen, X., & Li, S. (2020). Progress and perspectives of short‐chain fatty acids in aquaculture. Reviews in Aquaculture, 12, 283–298. https://doi.org/10.1111/raq.12317

Vazirzadeh, A., Roosta, H., Masoumi, H., Farhadi, A., & Jeffs, A. (2020). Long‐term effects of three probiotics, singular or combined, on serum innate immune parameters and expressions of cytokine genes in rainbow trout during grow‐out. Fish & Shellfish Immunology, 98, 748–757. https://doi.org/10.1016/j.fsi.2019.11.023

Xia, Y., Lu, M., Chen, G., Cao, J., Gao, F., Wang, M., Liu, Z., Zhang, D., Zhu, H., & Yi, M. (2018). Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 76, 368–379. https://doi.org/10.1016/j.fsi.2018.03.020

Xu, R., Ding, F.‐F., Zhou, N.‐N., Wang, T., Wu, H.‐X., Qiao, F., Chen, L.‐Q., Du, Z.‐Y., & Zhang, M.‐L. (2022). Bacillus amyloliquefaciens protects Nile tilapia against Aeromonas hydrophila infection and alleviates liver inflammation induced by high‐carbohydrate diet. Fish & Shellfish Immunology, 127, 836–842. https://doi.org/10.1016/j.fsi.2022.07.033

Yamamoto, F. Y., Ellis, M., Bowles, P. R., Suehs, B. A., Carvalho, P. L. P. F., Older, C. E., Hume, M. E., & Gatlin, D. M. (2022). Dietary supplementation of a commercial prebiotic, probiotic and their combination affected growth performance and transient intestinal microbiota of red drum (Sciaenops ocellatus L.). Animals, 12, 2629. https://doi.org/10.3390/ani12192629

Yang, H.‐L., Sun, Y.‐Z., Hu, X., Ye, J., J.‐d., Lu, K.‐L., Hu, L.‐H., & Zhang, J.‐J. (2019). Bacillus pumilus SE5 originated PG and LTA tuned the intestinal TLRs/MyD88 signaling and microbiota in grouper (Epinephelus coioides). Fish & Shellfish Immunology, 88, 266–271. https://doi.org/10.1016/j.fsi.2019.03.005

Yano, T. (1992). Assays of hemolytic complement activity. In J. S. Stolen (Ed.), Techniques in fish immunology (pp. 131–141). SOS publication.

Yilmaz, S., Yilmaz, E., Dawood, M. A. O., Ringø, E., Ahmadifar, E., & Abdel‐Latif, H. M. R. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547, 737514. https://doi.org/10.1016/j.aquaculture.2021.737514

Yousefi, M., Hoseini, S. M., Abtahi, B., Vatnikov, Y. A., Kulikov, E. V., & Rodionova, N. Y. (2022). Effects of dietary methanolic extract of hyssop, Hyssopus officinalis, on growth performance, hepatic antioxidant, humoral and intestinal immunity, and intestinal bacteria of rainbow trout, Oncorhynchus mykiss. Frontiers in Marine Science, 9, 1026651. https://doi.org/10.3389/fmars.2022.1026651

Zhang, C.‐N., Li, X.‐F., Jiang, G.‐Z., Zhang, D.‐D., Tian, H.‐Y., Li, J.‐Y., & Liu, W.‐B. (2014). Effects of dietary fructooligosaccharide levels and feeding modes on growth, immune responses, antioxidant capability and disease resistance of blunt snout bream (Megalobrama amblycephala). Fish and Shellfish Immunology, 41, 560–569.

Zhang, P., Cao, S., Zou, T., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X., Xie, S., & Zhou, W. (2018). Effects of dietary yeast culture on growth performance, immune response and disease resistance of gibel carp (Carassius auratus gibelio CAS Ⅲ). Fish & Shellfish Immunology, 82, 400–407. https://doi.org/10.1016/j.fsi.2018.08.044

Zhou, Y., Lei, Y., Cao, Z., Chen, X., Sun, Y., Xu, Y., Guo, W., Wang, S., & Liu, C. (2019). A β‐defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response. Developmental & Comparative Immunology, 92, 105–115. https://doi.org/10.1016/j.dci.2018.11.011

Zhuang, C., Huo, H., Yang, N., Fu, Q., Xue, T., Zhu, Q., Wang, B., Liu, X., & Li, C. (2021). Characterization of antibacterial activities and the related mechanisms of a β‐defensin in turbot (Scophthalmus maximus). Aquaculture, 541, 736839. https://doi.org/10.1016/j.aquaculture.2021.736839

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...