Developing Allosteric Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
22-17118S
Czech Science Foundation
61388963
Institute of Organic Chemistry and Biochemistry (RVO
National Institute of virology and bacteriology
LX22NPO5103
Programme EXCELES
European Union-Next Generation EU
PubMed
39140451
PubMed Central
PMC11617668
DOI
10.1002/cmdc.202400367
Knihovny.cz E-resources
- Keywords
- RdRp; remdesivir, SAR study, SARS-CoV-2, allosteric inhibitor, scaffold hopping,
- MeSH
- Allosteric Regulation drug effects MeSH
- Antiviral Agents * pharmacology chemistry chemical synthesis MeSH
- Enzyme Inhibitors pharmacology chemistry chemical synthesis MeSH
- Coronavirus RNA-Dependent RNA Polymerase antagonists & inhibitors metabolism MeSH
- Humans MeSH
- Molecular Structure MeSH
- RNA-Dependent RNA Polymerase antagonists & inhibitors metabolism MeSH
- SARS-CoV-2 * drug effects enzymology MeSH
- Molecular Docking Simulation MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antiviral Agents * MeSH
- Enzyme Inhibitors MeSH
- Coronavirus RNA-Dependent RNA Polymerase MeSH
- RNA-Dependent RNA Polymerase MeSH
The use of Fpocket and virtual screening techniques enabled us to identify potential allosteric druggable pockets within the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Of the compounds screened, compound 1 was identified as a promising inhibitor, lowering a SARS-CoV-2 RdRp activity to 57 % in an enzymatic assay at 10 μM concentration. The structure of compound 1 was subsequently optimized in order to preserve or enhance inhibitory activity. This involved the substitution of problematic ester and aromatic nitro groups with more inert functionalities. The N,N'-diphenylurea scaffold with two NH groups was identified as essential for the compound's activity but also exhibited high toxicity in Calu-3 cells. To address this issue, a scaffold hopping approach was employed to replace the urea core with potentially less toxic urea isosteres. This approach yielded several structural analogues with notable activity, specifically 2,2'-bisimidazol (in compound 55 with residual activity RA=42 %) and (1H-imidazol-2-yl)urea (in compounds 59 and 60, with RA=50 and 28 %, respectively). Despite these advances, toxicity remained a major concern. These compounds represent a promising starting point for further structure-activity relationship studies of allosteric inhibitors of SARS-CoV-2 RdRp, with the goal of reducing their cytotoxicity and improving aqueous solubility.
See more in PubMed
Haileamlak A., Ethiop. J. Health Sci. 2021, 31, 1073–1074. PubMed PMC
Magden J., Kääriäinen L., Ahola T., Appl. Microbiol. Biotechnol. 2005, 66, 612–621. PubMed PMC
Wang Y., Anirudhan V., Du R., Cui Q., Rong L., J. Med. Virol. 2021, 93, 300–310. PubMed
Iftikhar H., Ali H. N., Farooq S., Naveed H., Shahzad-ul-Hussan S., Comput. Biol. Med. 2020, 122, 103848. PubMed PMC
Chien M., Anderson T. K., Jockusch S., Tao C., Li X., Kumar S., Russo J. J., Kirchdoerfer R. N., Ju J., J. Proteome Res. 2020, 19, 4690–4697. PubMed PMC
Naidu S. A. G., Mustafa G., Clemens R. A., Naidu A. S., J. Diet. Suppl. 2023, 20, 254–283. PubMed
Cannalire R., Cerchia C., Beccari A. R., Di Leva F. S., Summa V., J. Med. Chem. 2022, 65, 2716–2746. PubMed PMC
Ratan Y., Rajput A., Jain V., Mishra D. K., Gautam R. K., Pareek A., Curr. Pharm. Biotechnol. 2023, 24, 1727–1739. PubMed
R. Alipoor, R. Ranjbar, Biol. Chem. 2022, 404, 569–584. PubMed
C. Chen, Y. Zhang, J. Huang, P. Yin, Z. Cheng, J. Wu, S. Chen, Y. Zhang, B. Chen, M. Lu, Y. Luo, L. Ju, J. Zhang, X. Wang, Front. Pharmacol 2021, 12, 683296. PubMed PMC
Beigel J. H., Tomashek K. M., Dodd L. E., Mehta A. K., Zingman B. S., Kalil A. C., Hohmann E., Chu H. Y., Luetkemeyer A., Kline S., Lopez de Castilla D., Finberg R. W., Dierberg K., Tapson V., Hsieh L., Patterson T. F., Paredes R., Sweeney D. A., Short W. R., Touloumi G., Lye D. C., Ohmagari N., Oh M.-D., Ruiz-Palacios G. M., Benfield T., Fätkenheuer G., Kortepeter M. G., Atmar R. L., Creech C. B., Lundgren J., Babiker A. G., Pett S., Neaton J. D., Burgess T. H., Bonnett T., Green M., Makowski M., Osinusi A., Nayak S., Lane H. C., N. Engl. J. Med. 2020, 383, 1813–1826. PubMed PMC
Wu Z., Han Z., Liu B., Shen N., Front. Pharmacol. 2022, 13, 971890. PubMed PMC
Lamontagne F., Agarwal A., Rochwerg B., Siemieniuk R. A. C., Agoritsas T., Askie L., Lytvyn L., Leo Y.-S., Macdonald H., Zeng L., Amin W., da Silva A. R. A., Aryal D., Barragan F. A. J., Bausch F. J., Burhan E., Calfee C. S., Cecconi M., Chacko B., Chanda D., Dat V. Q., De Sutter A., Du B., Freedman S., Geduld H., Gee P., Gotte M., Harley N., Hashmi M., Hunt B., Jehan F., Kabra S. K., Kanda S., Kim Y.-J., Kissoon N., Krishna S., Kuppalli K., Kwizera A., Castro-Rial M. L., Lisboa T., Lodha R., Mahaka I., Manai H., Mendelson M., Battista Migliori G., Mino G., Nsutebu E., Preller J., Pshenichnaya N., Qadir N., Relan P., Sabzwari S., Sarin R., Shankar-Hari M., Sharland M., Shen Y., Ranganathan S. S., Souza J. P., Stegemann M., Swanstrom R., Ugarte S., Uyeki T., Venkatapuram S., Vuyiseka D., Wijewickrama A., Tran L., Zeraatkar D., Bartoszko J. J., Ge L., Brignardello-Petersen R., Owen A., Guyatt G., Diaz J., Kawano-Dourado L., Jacobs M., Vandvik P. O., BMJ 2020, 370, m3379. PubMed
Jayk Bernal A., Gomes da Silva M. M., Musungaie D. B., Kovalchuk E., Gonzalez A., Delos Reyes V., Martín-Quirós A., Caraco Y., Williams-Diaz A., Brown M. L., Du J., Pedley A., Assaid C., Strizki J., Grobler J. A., Shamsuddin H. H., Tipping R., Wan H., Paschke A., Butterton J. R., Johnson M. G., De Anda C., N. Engl. J. Med. 2022, 386, 509–520. PubMed PMC
Smith E. C., Blanc H., Surdel M. C., Vignuzzi M., Denison M. R., PLoS Pathog. 2013, 9, e1003565. PubMed PMC
Tee W.-V., Tan Z. W., Lee K., Guarnera E., Berezovsky I. N., J. Phys. Chem. B 2021, 125, 3763–3780. PubMed
Faisal S., Badshah S. L., Kubra B., Sharaf M., Emwas A.-H., Jaremko M., Abdalla M., Molecules 2022, 27, 223. PubMed PMC
Gao Y., Yan L., Huang Y., Liu F., Zhao Y., Cao L., Wang T., Sun Q., Ming Z., Zhang L., Ge J., Zheng L., Zhang Y., Wang H., Zhu Y., Zhu C., Hu T., Hua T., Zhang B., Yang X., Li J., Yang H., Liu Z., Xu W., Guddat L. W., Wang Q., Lou Z., Rao Z., Science. 2020, 368, 779–782. PubMed PMC
Peng Q., Peng R., Yuan B., Zhao J., Wang M., Wang X., Wang Q., Sun Y., Fan Z., Qi J., Gao G. F., Shi Y., Cell Rep. 2020, 31, 107774. PubMed PMC
Sáez-Álvarez Y., Arias A., del Águila C., Agudo R., Sci. Rep. 2019, 9, 5397. PubMed PMC
Gordon C. J., Tchesnokov E. P., Woolner E., Perry J. K., Feng J. Y., Porter D. P., Götte M., J. Biol. Chem. 2020, 295, 6785–6797. PubMed PMC
Hillen H. S., Kokic G., Farnung L., Dienemann C., Tegunov D., Cramer P., Nature 2020, 584, 154–156. PubMed
Bukreyeva N., Sattler R. A., Mantlo E. K., Wanninger T., Manning J. T., Huang C., Paessler S., Zeldis J. B., F1000Research 2020, 9, 361.
Simsek Yavuz S., Komsuoglu Celikyurt I., Turkish J. Med. Sci. 2021, 51, 3372–3390. PubMed PMC
A. Ballou, “ViralClear halts its Phase 2 Hospitalized COVID-19 Trial”, BioSig Technologies, Inc. (BSGM), released October 26, 2020; accessed September 13, 2024; https://ir.biosig.com/press-releases/detail/234/viralclear-halts-its-phase-2-hospitalized-covid-19-trial.
Linden T., Hanses F., Domingo-Fernandez D., DeLong L. N., Kodamullil A. T., Schneider J., Vehreschild M. J. G. T., Lanznaster J., Ruethrich M. M., Borgmann S., Hower M., Wille K., Feldt T., Rieg S., Hertenstein B., Wyen C., Roemmele C., Vehreschild J. J., Jakob C. E. M., Stecher M., Kuzikov M., Zaliani A., Froehlich H., Artif. Intell. Life Sci. 2021, 1, 100020. PubMed PMC
Węcławek-Tompol J., Zakrzewska Z., Gryniewicz-Kwiatkowska O., Pierlejewski F., Bień E., Zaucha-Prażmo A., Zając-Spychała O., Szmydki-Baran A., Mizia-Malarz A., Bal W., Sawicka-Żukowska M., Kruk A., Ociepa T., Raciborska A., Książek A., Szczepański T., Peregud-Pogorzelski J., Krawczuk-Rybak M., Chaber R., Matysiak M., Wachowiak J., Irga-Jaworska N., Młynarski W., Dembowska-Bagińska B., Balwierz W., Matkowska-Kocjan A., Kazanowska B., Styczyński J., Ussowicz M., J. Hematol. Oncol. 2022, 15, 71. PubMed PMC
Dias S. S. G., Soares V. C., Ferreira A. C., Sacramento C. Q., Fintelman-Rodrigues N., Temerozo J. R., Teixeira L., Nunes da Silva M. A., Barreto E., Mattos M., de Freitas C. S., Azevedo-Quintanilha I. G., Manso P. P. A., Miranda M. D., Siqueira M. M., Hottz E. D., Pão C. R. R., Bou-Habib D. C., Barreto-Vieira D. F., Bozza F. A., Souza T. M. L., Bozza P. T., PLoS Pathog. 2020, 16, e1009127. PubMed PMC
Jang W. D., Jeon S., Kim S., Lee S. Y., Proc. Natl. Acad. Sci. USA 2021, 118, e2024302118 PubMed
Alhadrami H. A., Sayed A. M., Al-Khatabi H., Alhakamy N. A., Rateb M. E., Pharmaceuticals 2021, 14, 541. PubMed PMC
Sheng C., Che X., Wang W., Wang S., Cao Y., Yao J., Miao Z., Zhang W., Eur. J. Med. Chem. 2011, 46, 1706–1712. PubMed
Böhm H.-J., Flohr A., Stahl M., Drug Discovery Today Technol. 2004, 1, 217–224. PubMed