• This record comes from PubMed

Enhancing the oxygen evolution reaction activity of CuCo based hydroxides with V2CT x MXene

. 2024 Sep 18 ; 12 (36) : 24248-24259. [epub] 20240802

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

The oxygen evolution reaction (OER) is a key reaction in the production of green hydrogen by water electrolysis. In alkaline media, the current state of the art catalysts used for the OER are based on non-noble metal oxides. However, despite their huge potential as OER catalysts, these materials exhibit various disadvantages including lack of stability and conductivity that hinder the wide-spread utilization of these materials in alkaline electrolyzer devices. This study highlights the innovative chemical functionalization of a mixed copper cobalt hydroxide with the V2CT x MXene to enhance the OER efficiency, addressing the need for effective electrocatalytic interfaces for sustainable hydrogen production. The herein synthesized CuCo@V2CT x electrocatalysts demonstrate remarkable activity, outperforming the pure CuCo catalysts for the OER and moreover show increased efficiency after 12 hours of continuous operation. This strategic integration improved the water oxidation performance of the pure oxide material by improving the composite's hydrophilicity, charge transfer properties and ability to hinder Cu leaching. The materials were characterized using an array of materials characterization techniques to help decipher both structure of the composite materials after synthesis and to elucidate the reasoning for the OER enhancement for the composites. This work demonstrates the significant potential of TMO-based nanomaterials combined with V2CT x for advanced innovative electrocatalytic interfaces in energy conversion applications.

See more in PubMed

Browne M. P. Sofer Z. Pumera M. Energy Environ. Sci. 2019;12:41–58. doi: 10.1039/C8EE02495B. DOI

Doyle R. L. Godwin I. J. Brandon M. P. Lyons M. E. G. Phys. Chem. Chem. Phys. 2013;15:13737–13783. doi: 10.1039/C3CP51213D. PubMed DOI

McAteer D. Godwin I. J. Ling Z. Harvey A. He L. Boland C. S. Vega-Mayoral V. Szydłowska B. Rovetta A. A. Backes C. Boland J. B. Chen X. Lyons M. E. G. Coleman J. N. Adv. Energy Mater. 2018;8:1702965. doi: 10.1002/aenm.201702965. DOI

Filimonenkov I. S. Bouillet C. Kéranguéven G. Simonov P. A. Tsirlina G. A. Savinova E. R. Electrochim. Acta. 2019;321:134657. doi: 10.1016/j.electacta.2019.134657. DOI

Grinberg P. Methven B. A. J. Swider K. Mester Z. ACS Omega. 2021;6:22717–22725. doi: 10.1021/acsomega.1c03013. PubMed DOI PMC

Görlin M. Ferreira de Araújo J. Schmies H. Bernsmeier D. Dresp S. Gliech M. Jusys Z. Chernev P. Kraehnert R. Dau H. Strasser P. J. Am. Chem. Soc. 2017;139:2070–2082. doi: 10.1021/jacs.6b12250. PubMed DOI

Oh H.-S. Nong H. N. Reier T. Bergmann A. Gliech M. Ferreira de Araújo J. Willinger E. Schlögl R. Teschner D. Strasser P. J. Am. Chem. Soc. 2016;138:12552–12563. doi: 10.1021/jacs.6b07199. PubMed DOI

Browne M. P. Tyndall D. Nicolosi V. Curr. Opin. Electrochem. 2022;34:101021. doi: 10.1016/j.coelec.2022.101021. DOI

Jun B.-M. Kim S. Heo J. Park C. M. Her N. Jang M. Huang Y. Han J. Yoon Y. Nano Res. 2019;12:471–487. doi: 10.1007/s12274-018-2225-3. DOI

Alhabeb M. Maleski K. Anasori B. Lelyukh P. Clark L. Sin S. Gogotsi Y. Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI

He J. Lyu P. Nachtigall P. J. Mater. Chem. C. 2016;4:11143–11149. doi: 10.1039/C6TC03917K. DOI

Li N. Fan J. Nanotechnology. 2021;32:252001. doi: 10.1088/1361-6528/abea37. PubMed DOI

Tyndall D. Gannon L. Hughes L. Carolan J. Pinilla S. Jaśkaniec S. Spurling D. Ronan O. McGuinness C. McEvoy N. Nicolosi V. Browne M. P. npj 2D Mater. Appl. 2023;7:15. doi: 10.1038/s41699-023-00377-1. PubMed DOI PMC

Benchakar M. Bilyk T. Garnero C. Loupias L. Morais C. Pacaud J. Canaff C. Chartier P. Morisset S. Guignard N. Mauchamp V. Célérier S. Habrioux A. Adv. Mater. Interfaces. 2019;6:1901328. doi: 10.1002/admi.201901328. DOI

Nazari M. Morsali A. J. Mater. Chem. A. 2024;12:4826–4834. doi: 10.1039/D4TA00131A. DOI

Gogoi D. Karmur R. S. Das M. R. Ghosh N. N. J. Mater. Chem. A. 2023;11:23867–23880. doi: 10.1039/D3TA05104H. DOI

Kaplan C. Restrepo R. M. Schultz T. Li K. Nicolosi V. Koch N. Browne M. P. Electrochim. Acta. 2024;490:144269. doi: 10.1016/j.electacta.2024.144269. DOI

Loupias L. Boulé R. Morais C. Mauchamp V. Guignard N. Rousseau J. Pacaud J. Chartier P. Gaudon M. Coutanceau C. Célérier S. Habrioux A. 2D Materials. 2023;10:024005. doi: 10.1088/2053-1583/acbfcb. DOI

Zhao X. Zheng X. Lu Q. Li Y. Xiao F. Tang B. Wang S. Yu D. Y. W. Rogach A. L. EcoMat. 2023;5:e12293. doi: 10.1002/eom2.12293. DOI

Wu X. Scott K. J. Mater. Chem. 2011;21:12344–12351. doi: 10.1039/C1JM11312G. DOI

Wang X. Yang M. Feng W. Qiao L. An X. Kong Q. Liu X. Wang Y. Liu Y. Li T. Xiang Z. Wang Q. Wu X. J. Electroanal. Chem. 2021;903:115823. doi: 10.1016/j.jelechem.2021.115823. DOI

Ghorbanzadeh S. Hosseini S. A. Alishahi M. J. Alloys Compd. 2022;920:165811. doi: 10.1016/j.jallcom.2022.165811. DOI

Kim K.-H. Choi Y.-H. Mater. Res. Express. 2022;9:034001. doi: 10.1088/2053-1591/ac5f89. DOI

Wu M. Wang B. Hu Q. Wang L. Zhou A. Materials. 2018;11:2112. doi: 10.3390/ma11112112. PubMed DOI PMC

Ying G. Kota S. Dillon A. D. Fafarman A. T. Barsoum M. W. FlatChem. 2018;8:25–30. doi: 10.1016/j.flatc.2018.03.001. DOI

Shan Q. Mu X. Alhabeb M. Shuck C. E. Pang D. Zhao X. Chu X.-F. Wei Y. Du F. Chen G. Gogotsi Y. Gao Y. Dall'Agnese Y. Electrochem. Commun. 2018;96:103–107. doi: 10.1016/j.elecom.2018.10.012. DOI

Fagerli F. H. Wang Z. Grande T. Kaland H. Selbach S. M. Wagner N. P. Wiik K. ACS Omega. 2022;7:23790–23799. doi: 10.1021/acsomega.2c02441. PubMed DOI PMC

Amargianou F. Bärmann P. Shao H. Taberna P.-L. Simon P. Gonzalez-Julian J. Weigand M. Petit T. Small Methods. 2004:2400190. PubMed PMC

Wang L. Liu D. Lian W. Hu Q. Liu X. Zhou A. J. Mater. Res. Technol. 2020;9:984–993. doi: 10.1016/j.jmrt.2019.11.038. DOI

Biesinger M. C. Lau L. W. M. Gerson A. R. Smart R. S. C. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI

Akir S. Azadmanjiri J. Antonatos N. Děkanovský L. Roy P. K. Mazánek V. Lontio Fomekong R. Regner J. Sofer Z. Nanoscale. 2023;15:12648–12659. doi: 10.1039/D3NR01144E. PubMed DOI

Lontio Fomekong R. Akir S. Oliveira F. M. Luxa J. Chacko L. Regner J. Dekanovsky L. Vejmelkova E. Sofer Z. J. Power Sources. 2024;602:234293. doi: 10.1016/j.jpowsour.2024.234293. DOI

Biesinger M. C. Payne B. P. Grosvenor A. P. Lau L. W. M. Gerson A. R. Smart R. S. C. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI

Lee M. Ding X. Banerjee S. Krause F. Smirnov V. Astakhov O. Merdzhanova T. Klingebiel B. Kirchartz T. Finger F. Rau U. Haas S. Adv. Mater. Technol. 2020;5:2000592. doi: 10.1002/admt.202000592. DOI

Akir S. Lontio Fomekong R. Chacko L. Děkanovský L. Mazánek V. Sturala J. Koňáková D. Sofer Z. J. Energy Storage. 2024;85:110962. doi: 10.1016/j.est.2024.110962. DOI

Bilibana M. P. Adv. Sens. Energy Mater. 2023;2:100080. doi: 10.1016/j.asems.2023.100080. DOI

Thakur R. VahidMohammadi A. Moncada J. Adams W. R. Chi M. Tatarchuk B. Beidaghi M. Carrero C. A. Nanoscale. 2019;11:10716–10726. doi: 10.1039/C9NR03020D. PubMed DOI

Zhang Z. Ma X. Wang W. Gong X. Zhao Y. Mu Q. Xue Z. Liu X. Zheng H. Xu W. J. Mater. Sci. 2022;57:13179–13201. doi: 10.1007/s10853-022-07492-2. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...