Enhancing the oxygen evolution reaction activity of CuCo based hydroxides with V2CT x MXene
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39157537
PubMed Central
PMC11325309
DOI
10.1039/d4ta02700k
PII: d4ta02700k
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The oxygen evolution reaction (OER) is a key reaction in the production of green hydrogen by water electrolysis. In alkaline media, the current state of the art catalysts used for the OER are based on non-noble metal oxides. However, despite their huge potential as OER catalysts, these materials exhibit various disadvantages including lack of stability and conductivity that hinder the wide-spread utilization of these materials in alkaline electrolyzer devices. This study highlights the innovative chemical functionalization of a mixed copper cobalt hydroxide with the V2CT x MXene to enhance the OER efficiency, addressing the need for effective electrocatalytic interfaces for sustainable hydrogen production. The herein synthesized CuCo@V2CT x electrocatalysts demonstrate remarkable activity, outperforming the pure CuCo catalysts for the OER and moreover show increased efficiency after 12 hours of continuous operation. This strategic integration improved the water oxidation performance of the pure oxide material by improving the composite's hydrophilicity, charge transfer properties and ability to hinder Cu leaching. The materials were characterized using an array of materials characterization techniques to help decipher both structure of the composite materials after synthesis and to elucidate the reasoning for the OER enhancement for the composites. This work demonstrates the significant potential of TMO-based nanomaterials combined with V2CT x for advanced innovative electrocatalytic interfaces in energy conversion applications.
Helmholtz Zentrum Berlin für Materialien und Energie GmbH Berlin 14109 Germany
Institut für Physik and IRIS Adlershof Humboldt Universität zu Berlin Berlin 12489 Germany
See more in PubMed
Browne M. P. Sofer Z. Pumera M. Energy Environ. Sci. 2019;12:41–58. doi: 10.1039/C8EE02495B. DOI
Doyle R. L. Godwin I. J. Brandon M. P. Lyons M. E. G. Phys. Chem. Chem. Phys. 2013;15:13737–13783. doi: 10.1039/C3CP51213D. PubMed DOI
McAteer D. Godwin I. J. Ling Z. Harvey A. He L. Boland C. S. Vega-Mayoral V. Szydłowska B. Rovetta A. A. Backes C. Boland J. B. Chen X. Lyons M. E. G. Coleman J. N. Adv. Energy Mater. 2018;8:1702965. doi: 10.1002/aenm.201702965. DOI
Filimonenkov I. S. Bouillet C. Kéranguéven G. Simonov P. A. Tsirlina G. A. Savinova E. R. Electrochim. Acta. 2019;321:134657. doi: 10.1016/j.electacta.2019.134657. DOI
Grinberg P. Methven B. A. J. Swider K. Mester Z. ACS Omega. 2021;6:22717–22725. doi: 10.1021/acsomega.1c03013. PubMed DOI PMC
Görlin M. Ferreira de Araújo J. Schmies H. Bernsmeier D. Dresp S. Gliech M. Jusys Z. Chernev P. Kraehnert R. Dau H. Strasser P. J. Am. Chem. Soc. 2017;139:2070–2082. doi: 10.1021/jacs.6b12250. PubMed DOI
Oh H.-S. Nong H. N. Reier T. Bergmann A. Gliech M. Ferreira de Araújo J. Willinger E. Schlögl R. Teschner D. Strasser P. J. Am. Chem. Soc. 2016;138:12552–12563. doi: 10.1021/jacs.6b07199. PubMed DOI
Browne M. P. Tyndall D. Nicolosi V. Curr. Opin. Electrochem. 2022;34:101021. doi: 10.1016/j.coelec.2022.101021. DOI
Jun B.-M. Kim S. Heo J. Park C. M. Her N. Jang M. Huang Y. Han J. Yoon Y. Nano Res. 2019;12:471–487. doi: 10.1007/s12274-018-2225-3. DOI
Alhabeb M. Maleski K. Anasori B. Lelyukh P. Clark L. Sin S. Gogotsi Y. Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI
He J. Lyu P. Nachtigall P. J. Mater. Chem. C. 2016;4:11143–11149. doi: 10.1039/C6TC03917K. DOI
Li N. Fan J. Nanotechnology. 2021;32:252001. doi: 10.1088/1361-6528/abea37. PubMed DOI
Tyndall D. Gannon L. Hughes L. Carolan J. Pinilla S. Jaśkaniec S. Spurling D. Ronan O. McGuinness C. McEvoy N. Nicolosi V. Browne M. P. npj 2D Mater. Appl. 2023;7:15. doi: 10.1038/s41699-023-00377-1. PubMed DOI PMC
Benchakar M. Bilyk T. Garnero C. Loupias L. Morais C. Pacaud J. Canaff C. Chartier P. Morisset S. Guignard N. Mauchamp V. Célérier S. Habrioux A. Adv. Mater. Interfaces. 2019;6:1901328. doi: 10.1002/admi.201901328. DOI
Nazari M. Morsali A. J. Mater. Chem. A. 2024;12:4826–4834. doi: 10.1039/D4TA00131A. DOI
Gogoi D. Karmur R. S. Das M. R. Ghosh N. N. J. Mater. Chem. A. 2023;11:23867–23880. doi: 10.1039/D3TA05104H. DOI
Kaplan C. Restrepo R. M. Schultz T. Li K. Nicolosi V. Koch N. Browne M. P. Electrochim. Acta. 2024;490:144269. doi: 10.1016/j.electacta.2024.144269. DOI
Loupias L. Boulé R. Morais C. Mauchamp V. Guignard N. Rousseau J. Pacaud J. Chartier P. Gaudon M. Coutanceau C. Célérier S. Habrioux A. 2D Materials. 2023;10:024005. doi: 10.1088/2053-1583/acbfcb. DOI
Zhao X. Zheng X. Lu Q. Li Y. Xiao F. Tang B. Wang S. Yu D. Y. W. Rogach A. L. EcoMat. 2023;5:e12293. doi: 10.1002/eom2.12293. DOI
Wu X. Scott K. J. Mater. Chem. 2011;21:12344–12351. doi: 10.1039/C1JM11312G. DOI
Wang X. Yang M. Feng W. Qiao L. An X. Kong Q. Liu X. Wang Y. Liu Y. Li T. Xiang Z. Wang Q. Wu X. J. Electroanal. Chem. 2021;903:115823. doi: 10.1016/j.jelechem.2021.115823. DOI
Ghorbanzadeh S. Hosseini S. A. Alishahi M. J. Alloys Compd. 2022;920:165811. doi: 10.1016/j.jallcom.2022.165811. DOI
Kim K.-H. Choi Y.-H. Mater. Res. Express. 2022;9:034001. doi: 10.1088/2053-1591/ac5f89. DOI
Wu M. Wang B. Hu Q. Wang L. Zhou A. Materials. 2018;11:2112. doi: 10.3390/ma11112112. PubMed DOI PMC
Ying G. Kota S. Dillon A. D. Fafarman A. T. Barsoum M. W. FlatChem. 2018;8:25–30. doi: 10.1016/j.flatc.2018.03.001. DOI
Shan Q. Mu X. Alhabeb M. Shuck C. E. Pang D. Zhao X. Chu X.-F. Wei Y. Du F. Chen G. Gogotsi Y. Gao Y. Dall'Agnese Y. Electrochem. Commun. 2018;96:103–107. doi: 10.1016/j.elecom.2018.10.012. DOI
Fagerli F. H. Wang Z. Grande T. Kaland H. Selbach S. M. Wagner N. P. Wiik K. ACS Omega. 2022;7:23790–23799. doi: 10.1021/acsomega.2c02441. PubMed DOI PMC
Amargianou F. Bärmann P. Shao H. Taberna P.-L. Simon P. Gonzalez-Julian J. Weigand M. Petit T. Small Methods. 2004:2400190. PubMed PMC
Wang L. Liu D. Lian W. Hu Q. Liu X. Zhou A. J. Mater. Res. Technol. 2020;9:984–993. doi: 10.1016/j.jmrt.2019.11.038. DOI
Biesinger M. C. Lau L. W. M. Gerson A. R. Smart R. S. C. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI
Akir S. Azadmanjiri J. Antonatos N. Děkanovský L. Roy P. K. Mazánek V. Lontio Fomekong R. Regner J. Sofer Z. Nanoscale. 2023;15:12648–12659. doi: 10.1039/D3NR01144E. PubMed DOI
Lontio Fomekong R. Akir S. Oliveira F. M. Luxa J. Chacko L. Regner J. Dekanovsky L. Vejmelkova E. Sofer Z. J. Power Sources. 2024;602:234293. doi: 10.1016/j.jpowsour.2024.234293. DOI
Biesinger M. C. Payne B. P. Grosvenor A. P. Lau L. W. M. Gerson A. R. Smart R. S. C. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI
Lee M. Ding X. Banerjee S. Krause F. Smirnov V. Astakhov O. Merdzhanova T. Klingebiel B. Kirchartz T. Finger F. Rau U. Haas S. Adv. Mater. Technol. 2020;5:2000592. doi: 10.1002/admt.202000592. DOI
Akir S. Lontio Fomekong R. Chacko L. Děkanovský L. Mazánek V. Sturala J. Koňáková D. Sofer Z. J. Energy Storage. 2024;85:110962. doi: 10.1016/j.est.2024.110962. DOI
Bilibana M. P. Adv. Sens. Energy Mater. 2023;2:100080. doi: 10.1016/j.asems.2023.100080. DOI
Thakur R. VahidMohammadi A. Moncada J. Adams W. R. Chi M. Tatarchuk B. Beidaghi M. Carrero C. A. Nanoscale. 2019;11:10716–10726. doi: 10.1039/C9NR03020D. PubMed DOI
Zhang Z. Ma X. Wang W. Gong X. Zhao Y. Mu Q. Xue Z. Liu X. Zheng H. Xu W. J. Mater. Sci. 2022;57:13179–13201. doi: 10.1007/s10853-022-07492-2. DOI