Exploring the transcriptomic profile of human monkeypox virus via CAGE and native RNA sequencing approaches

. 2024 Sep 25 ; 9 (9) : e0035624. [epub] 20240827

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39191390

Grantová podpora
K 142674 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal (NKFI)
RRF-2.3.1-21-2022-00010 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal (NKFI)

In this study, we employed short- and long-read sequencing technologies to delineate the transcriptional architecture of the human monkeypox virus and to identify key regulatory elements that govern its gene expression. Specifically, we conducted a transcriptomic analysis to annotate the transcription start sites (TSSs) and transcription end sites (TESs) of the virus by utilizing Cap Analysis of gene expression sequencing on the Illumina platform and direct RNA sequencing on the Oxford Nanopore technology device. Our investigations uncovered significant complexity in the use of alternative TSSs and TESs in viral genes. In this research, we also detected the promoter elements and poly(A) signals associated with the viral genes. Additionally, we identified novel genes in both the left and right variable regions of the viral genome.IMPORTANCEGenerally, gaining insight into how the transcription of a virus is regulated offers insights into the key mechanisms that control its life cycle. The recent outbreak of the human monkeypox virus has underscored the necessity of understanding the basic biology of its causative agent. Our results are pivotal for constructing a comprehensive transcriptomic atlas of the human monkeypox virus, providing valuable resources for future studies.

Zobrazit více v PubMed

Diven DG. 2001. An overview of poxviruses. J Am Acad Dermatol 44:1–16. doi:10.1067/mjd.2001.109302 PubMed DOI

Moss B. 2013. Poxvirus DNA replication. Cold Spring Harb Perspect Biol 5:a010199. doi:10.1101/cshperspect.a010199 PubMed DOI PMC

Moss B, Smith GL. 2021. Poxviridae: the viruses and their replication, p 573–613. In Howley PM, Knipe DM, Cohen JL, Damania BA (ed), Field’s virology, 7th ed. Wolters Kluwer.

Elwood JM. 1989. Smallpox and its eradication. J Epidemiol Community Health 43:92–92. doi:10.1136/jech.43.1.92 DOI

Ulaeto D, Agafonov A, Burchfield J, Carter L, Happi C, Jakob R, Krpelanova E, Kuppalli K, Lefkowitz EJ, Mauldin MR, de Oliveira T, Onoja B, Otieno J, Rambaut A, Subissi L, Yinka-Ogunleye A, Lewis RF. 2023. New nomenclature for mpox (monkeypox) and monkeypox virus clades. Lancet Infect Dis 23:273–275. doi:10.1016/S1473-3099(23)00055-5 PubMed DOI PMC

Adler H, Gould S, Hine P, Snell LB, Wong W, Houlihan CF, Osborne JC, Rampling T, Beadsworth MB, Duncan CJ, et al. . 2022. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect Dis 22:1153–1162. doi:10.1016/S1473-3099(22)00228-6 PubMed DOI PMC

Ladnyj ID, Ziegler P, Kima E. 1972. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ 46:593–597. PubMed PMC

Monzón S, Varona S, Negredo A, Vidal-Freire S, Patiño-Galindo JA, Ferressini-Gerpe N, Zaballos A, Orviz E, Ayerdi O, Muñoz-Gómez A, et al. . 2024. Monkeypox virus genomic accordion strategies. Nat Commun 15:3059. doi:10.1038/s41467-024-46949-7 PubMed DOI PMC

Americo JL, Earl PL, Moss B. 2023. Virulence differences of mpox (monkeypox) virus clades I, IIa, and IIb.1 in a small animal model. Proc Natl Acad Sci U S A 120:e2220415120. doi:10.1073/pnas.2220415120 PubMed DOI PMC

Rezza G. 2019. Emergence of human monkeypox in west Africa. Lancet Infect Dis 19:797–799. doi:10.1016/S1473-3099(19)30281-6 PubMed DOI

Damon IK. 2011. Status of human monkeypox: clinical disease, epidemiology and research. Vaccine (Auckl) 29 Suppl 4:D54–D59. doi:10.1016/j.vaccine.2011.04.014 PubMed DOI

Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, Mixão V, Ferreira R, Santos D, Duarte S, Vieira L, Borrego MJ, Núncio S, de Carvalho IL, Pelerito A, Cordeiro R, Gomes JP. 2022. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 28:1569–1572. doi:10.1038/s41591-022-01907-y PubMed DOI PMC

Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ. 2010. Orthopoxvirus genome evolution: the role of gene loss. Viruses 2:1933–1967. doi:10.3390/v2091933 PubMed DOI PMC

Walsh D. 2017. Poxviruses: slipping and sliding through transcription and translation. PLoS Pathog 13:e1006634. doi:10.1371/journal.ppat.1006634 PubMed DOI PMC

Baldick CJ, Keck JG, Moss B. 1992. Mutational analysis of the core, spacer, and initiator regions of vaccinia virus intermediate-class promoters. J Virol 66:4710–4719. doi:10.1128/JVI.66.8.4710-4719.1992 PubMed DOI PMC

Yang Z, Martens CA, Bruno DP, Porcella SF, Moss B. 2012. Pervasive initiation and 3’-end formation of poxvirus postreplicative RNAs. J Biol Chem 287:31050–31060. doi:10.1074/jbc.M112.390054 PubMed DOI PMC

Condit RC, Moussatche N, Traktman P. 2006. In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res 66:31–124. doi:10.1016/S0065-3527(06)66002-8 PubMed DOI

Tombácz D, Prazsák I, Szucs A, Dénes B, Snyder M, Boldogkoi Z. 2018. Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques. Gigascience 7:giy139. doi:10.1093/gigascience/giy139 PubMed DOI PMC

McFadden G. 2005. Poxvirus tropism. Nat Rev Microbiol 3:201–213. doi:10.1038/nrmicro1099 PubMed DOI PMC

Moss B. 2007. Field’s virology. 5th ed. Lippincott Williams & Wilkins, Wolters Kluwer, Philadelphia.

Davison AJ, Moss B. 1989. Structure of vaccinia virus late promoters. J Mol Biol 210:771–784. doi:10.1016/0022-2836(89)90108-3 PubMed DOI

Dhungel P, Cao S, Yang Z. 2017. The 5’-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation. PLoS Pathog 13:e1006602. doi:10.1371/journal.ppat.1006602 PubMed DOI PMC

Alkhalil A, Hammamieh R, Hardick J, Ichou MA, Jett M, Ibrahim S. 2010. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions. Virol J 7:173. doi:10.1186/1743-422X-7-173 PubMed DOI PMC

Rubins KH, Hensley LE, Bell GW, Wang C, Lefkowitz EJ, Brown PO, Relman DA. 2008. Comparative analysis of viral gene expression programs during poxvirus infection: a transcriptional map of the vaccinia and monkeypox genomes. PLoS One 3:e2628. doi:10.1371/journal.pone.0002628 PubMed DOI PMC

Rubins KH, Hensley LE, Relman DA, Brown PO. 2011. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus. PLoS ONE 6:e15615. doi:10.1371/journal.pone.0015615 PubMed DOI PMC

Bourquain D, Dabrowski PW, Nitsche A. 2013. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes. Virol J 10:61–74. doi:10.1186/1743-422X-10-61 PubMed DOI PMC

Tombácz D, Prazsák I, Torma G, Csabai Z, Balázs Z, Moldován N, Dénes B, Snyder M, Boldogkői Z. 2021. Time-course transcriptome profiling of a poxvirus using long-read full-length assay. Pathogens 10:919. doi:10.3390/pathogens10080919 PubMed DOI PMC

Berk AJ, Sharp PA. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732. doi:10.1016/0092-8674(77)90272-0 PubMed DOI

Weaver RF, Weissmann C. 1979. Mapping of RNA by a modification of the Berk-Sharp procedure: the 5’ termini of 15 S β-globin mRNA precursor and mature 10 S β-globin mRNA have identical map coordinates. Nucleic Acids Res 7:1175–1193. doi:10.1093/nar/7.5.1175 PubMed DOI PMC

Lee-Chen G-J, Niles EG. 1988. Map positions of the 5’ ends of eight mRNAs synthesized from the late genes in the vaccinia virus HindIII D fragment. Virology (Auckl) 163:80–92. doi:10.1016/0042-6822(88)90235-8 PubMed DOI

Traktman P, Sridhar P, Condit RC, Roberts BE. 1984. Transcriptional mapping of the DNA polymerase gene of vaccinia virus. J Virol 49:125–131. doi:10.1128/JVI.49.1.125-131.1984 PubMed DOI PMC

Hruby DE, Maki RA, Miller DB, Ball LA. 1983. Fine structure analysis and nucleotide sequence of the vaccinia virus thymidine kinase gene. Proc Natl Acad Sci USA 80:3411–3415. doi:10.1073/pnas.80.11.3411 PubMed DOI PMC

Jones EV, Moss B. 1985. Transcriptional mapping of the vaccinia virus DNA polymerase gene. J Virol 53:312–315. doi:10.1128/JVI.53.1.312-315.1985 PubMed DOI PMC

Luttge BG, Moyer RW. 2005. Suppressors of a host range mutation in the rabbitpox virus serpin SPI-1 map to proteins essential for viral DNA replication. J Virol 79:9168–9179. doi:10.1128/JVI.79.14.9168-9179.2005 PubMed DOI PMC

Lee-Chen G-J, Bourgeois N, Davidson K, Condit RC, Niles EG. 1988. Structure of the transcription initiation and termination sequences of seven early genes in the vaccinia virus HindIII D fragment. Virology (Auckl) 163:64–79. doi:10.1016/0042-6822(88)90234-6 PubMed DOI

Antczak JB, Patel DD, Ray CA, Ink BS, Pickup DJ. 1992. Site-specific RNA cleavage generates the 3’ end of a poxvirus late mRNA. Proc Natl Acad Sci USA 89:12033–12037. doi:10.1073/pnas.89.24.12033 PubMed DOI PMC

D’Costa SM, Antczak JB, Pickup DJ, Condit RC. 2004. Post-transcription cleavage generates the 3’ end of F17R transcripts in vaccinia virus. Virology (Auckl) 319:1–11. doi:10.1016/j.virol.2003.09.041 PubMed DOI

Frohman MA, Dush MK, Martin GR. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002. doi:10.1073/pnas.85.23.8998 PubMed DOI PMC

Wennier ST, Brinkmann K, Steinhäußer C, Mayländer N, Mnich C, Wielert U, Dirmeier U, Hausmann J, Chaplin P, Steigerwald R. 2013. A novel naturally occurring tandem promoter in modified vaccinia virus ankara drives very early gene expression and potent immune responses. PLoS One 8:e73511. doi:10.1371/journal.pone.0073511 PubMed DOI PMC

Ensinger MJ, Martin SA, Paoletti E, Moss B. 1975. Modification of the 5’-terminus of mRNA by soluble guanylyl and methyl transferases from vaccinia virus. Proc Natl Acad Sci USA 72:2525–2529. doi:10.1073/pnas.72.7.2525 PubMed DOI PMC

Parrish S, Moss B. 2007. Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses. J Virol 81:12973–12978. doi:10.1128/JVI.01668-07 PubMed DOI PMC

Parrish S, Resch W, Moss B. 2007. Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sci U S A 104:2139–2144. doi:10.1073/pnas.0611685104 PubMed DOI PMC

Furuichi Y. 2015. Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad Ser B Phys Biol Sci 91:394–409. doi:10.2183/pjab.91.394 PubMed DOI PMC

Wei CM, Moss B. 1975. Methylated nucleotides block 5’-terminus of vaccinia virus messenger RNA. Proc Natl Acad Sci USA 72:318–322. doi:10.1073/pnas.72.1.318 PubMed DOI PMC

Kanagawa T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J Biosci Bioeng 96:317–323. doi:10.1016/S1389-1723(03)90130-7 PubMed DOI

Cocquet J, Chong A, Zhang G, Veitia RA. 2006. Reverse transcriptase template switching and false alternative transcripts. Genomics 88:127–131. doi:10.1016/j.ygeno.2005.12.013 PubMed DOI

Balázs Z, Tombácz D, Csabai Z, Moldován N, Snyder M, Boldogkői Z. 2019. Template-switching artifacts resemble alternative polyadenylation. BMC Genomics 20:824. doi:10.1186/s12864-019-6199-7 PubMed DOI PMC

Mourão K, Schurch NJ, Lucoszek R, Froussios K, MacKinnon K, Duc C, Simpson G, Barton GJ. 2019. Detection and mitigation of spurious antisense expression with RoSA. F1000Res 8:819. doi:10.12688/f1000research.18952.1 DOI

McCarthy A. 2010. Third generation DNA sequencing: pacific biosciences’ single molecule real time technology. Chem Biol 17:675–676. doi:10.1016/j.chembiol.2010.07.004 PubMed DOI

Thompson JF, Milos PM. 2011. The properties and applications of single-molecule DNA sequencing. Genome Biol 12:217. doi:10.1186/gb-2011-12-2-217 PubMed DOI PMC

Bayega A, Wang YC, Oikonomopoulos S, Djambazian H, Fahiminiya S, Ragoussis J. 2018. Transcript profiling using long-read sequencing technologies. Methods Mol Biol 1783:121–147. doi:10.1007/978-1-4939-7834-2_6 PubMed DOI

Boldogkői Z, Moldován N, Balázs Z, Snyder M, Tombácz D. 2019. Long-read sequencing – a powerful tool in viral transcriptome research. Trends Microbiol 27:578–592. doi:10.1016/j.tim.2019.01.010 PubMed DOI

Soneson C, Yao Y, Bratus-Neuenschwander A, Patrignani A, Robinson MD, Hussain S. 2019. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat Commun 10:3359. doi:10.1038/s41467-019-11272-z PubMed DOI PMC

Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y. 2003. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA 100:15776–15781. doi:10.1073/pnas.2136655100 PubMed DOI PMC

Carninci P, Kvam C, Kitamura A, Ohsumi T, Okazaki Y, Itoh M, Kamiya M, Shibata K, Sasaki N, Izawa M, Muramatsu M, Hayashizaki Y, Schneider C. 1996. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37:327–336. doi:10.1006/geno.1996.0567 PubMed DOI

Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B. 2011. Genome-wide analysis of the 5’ and 3’ ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. J Virol 85:5897–5909. doi:10.1128/JVI.00428-11 PubMed DOI PMC

Tombácz D, Prazsák I, Csabai Z, Moldován N, Dénes B, Snyder M, Boldogkői Z. 2020. Long-read assays shed new light on the transcriptome complexity of a viral pathogen. Sci Rep 10:13822. doi:10.1038/s41598-020-70794-5 PubMed DOI PMC

Maróti Z, Tombácz D, Prazsák I, Moldován N, Csabai Z, Torma G, Balázs Z, Kalmár T, Dénes B, Snyder M, Boldogkői Z. 2021. Time-course transcriptome analysis of host cell response to poxvirus infection using a dual long-read sequencing approach. BMC Res Notes 14:239. doi:10.1186/s13104-021-05657-x PubMed DOI PMC

Wang Y, Zhang J, Li M, Jia M, Yang L, Wang T, Wang Y, Kang L, Li M, Kong L. 2024. Transcriptome and proteomic analysis of mpox virus F3L-expressing cells. Front Cell Infect Microbiol 14:1354410. doi:10.3389/fcimb.2024.1354410 PubMed DOI PMC

Desingu PA, Rubeni TP, Sundaresan NR. 2022. Evolution of monkeypox virus from 2017 to 2022: In the light of point mutations. Front Microbiol 13:1037598. doi:10.3389/fmicb.2022.1037598 PubMed DOI PMC

Kibungu EM, Vakaniaki EH, Kinganda-Lusamaki E, Kalonji-Mukendi T, Pukuta E, Hoff NA, Bogoch II, Cevik M, Gonsalves GS, Hensley LE, et al. . 2024. Clade I-associated mpox cases associated with sexual contact, the Democratic Republic of the Congo. Emerg Infect Dis 30:172–176. doi:10.3201/eid3001.231164 PubMed DOI PMC

Patel DD, Pickup DJ. 1987. Messenger RNAs of a strongly-expressed late gene of cowpox virus contain 5’-terminal poly(A) sequences. EMBO J 6:3787–3794. doi:10.1002/j.1460-2075.1987.tb02714.x PubMed DOI PMC

Ahn BY, Moss B. 1989. Capped poly(A) leaders of variable lengths at the 5’ ends of vaccinia virus late mRNAs. J Virol 63:226–232. doi:10.1128/JVI.63.1.226-232.1989 PubMed DOI PMC

Miner JN, Weinrich SL, Hruby DE. 1988. Molecular dissection of cis-acting regulatory elements from 5’-proximal regions of a vaccinia virus late gene cluster. J Virol 62:297–304. doi:10.1128/JVI.62.1.297-304.1988 PubMed DOI PMC

Cowley R, Greenaway PJ. 1990. Nucleotide sequence comparison of homologous genomic regions from variola, monkeypox, and vaccinia viruses. J Med Virol 31:267–271. doi:10.1002/jmv.1890310405 PubMed DOI

Ahn BY, Gershon PD, Jones EV, Moss B. 1990. Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. Mol Cell Biol 10:5433–5441. doi:10.1128/mcb.10.10.5433-5441.1990 PubMed DOI PMC

Ferrareze PAG, Pereira e Costa RA, Thompson CE. 2023. Genomic characterization and molecular evolution of human monkeypox viruses. Arch Virol 168:278. doi:10.1007/s00705-023-05904-5 PubMed DOI

Molteni C, Forni D, Cagliani R, Mozzi A, Clerici M, Sironi M. 2023. Evolution of the orthopoxvirus core genome. Virus Res 323:198975. doi:10.1016/j.virusres.2022.198975 PubMed DOI PMC

Rosel JL, Earl PL, Weir JP, Moss B. 1986. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment. J Virol 60:436–449. doi:10.1128/JVI.60.2.436-449.1986 PubMed DOI PMC

Yang Z, Reynolds SE, Martens CA, Bruno DP, Porcella SF, Moss B. 2011. Expression profiling of the intermediate and late stages of poxvirus replication. J Virol 85:9899–9908. doi:10.1128/JVI.05446-11 PubMed DOI PMC

Balázs Z, Tombácz D, Szűcs A, Csabai Z, Megyeri K, Petrov AN, Snyder M, Boldogkői Z. 2017. Long-read sequencing of human cytomegalovirus transcriptome reveals RNA isoforms carrying distinct coding potentials. Sci Rep 7:15989. doi:10.1038/s41598-017-16262-z PubMed DOI PMC

Mohamed MR, Niles EG. 2003. UUUUUNU stimulation of vaccinia virus early gene transcription termination. J Biol Chem 278:39534–39541. doi:10.1074/jbc.M306048200 PubMed DOI

Ma Y, Chen M, Bao Y, Song S, MPoxVR Team . 2022. MPoxVR: a comprehensive genomic resource for monkeypox virus variant surveillance. Innovation (Camb) 3:100296. doi:10.1016/j.xinn.2022.100296 PubMed DOI PMC

Calvo-Roitberg E, Daniels RF, Pai AA. 2023. Challenges in identifying mRNA transcript starts and ends from long-read sequencing data. bioRxiv:2023.07.26.550536. doi:10.1101/2023.07.26.550536 DOI

Moldován N, Torma G, Gulyás G, Hornyák Á, Zádori Z, Jefferson VA, Csabai Z, Boldogkői M, Tombácz D, Meyer F, Boldogkői Z. 2020. Time-course profiling of bovine alphaherpesvirus 1.1 transcriptome using multiplatform sequencing. Sci Rep 10:20496. doi:10.1038/s41598-020-77520-1 PubMed DOI PMC

Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. 2021. Combined short and long-read sequencing reveals a complex transcriptomic architecture of African swine fever virus. Viruses 13:579. doi:10.3390/v13040579 PubMed DOI PMC

Trotman JB, Schoenberg DR. 2019. A recap of RNA recapping. Wiley Interdiscip Rev RNA 10:e1504. doi:10.1002/wrna.1504 PubMed DOI PMC

O’Grady T, Wang X, Höner Zu Bentrup K, Baddoo M, Concha M, Flemington EK. 2016. Global transcript structure resolution of high gene density genomes through multi-platform data integration. Nucleic Acids Res 44:e145. doi:10.1093/nar/gkw629 PubMed DOI PMC

Braspenning SE, Sadaoka T, Breuer J, Verjans G, Ouwendijk WJD, Depledge DP. 2020. Decoding the architecture of the Varicella-Zoster virus transcriptome. MBio 11:e01568. doi:10.1128/mBio.01568-20 PubMed DOI PMC

Ibrahim F, Oppelt J, Maragkakis M, Mourelatos Z. 2021. TERA-Seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Res 49:e115–e115. doi:10.1093/nar/gkab713 PubMed DOI PMC

Gubser C, Hué S, Kellam P, Smith GL. 2004. Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85:105–117. doi:10.1099/vir.0.19565-0 PubMed DOI

Kluczyk A, Siemion IZ, Szewczuk Z, Wieczorek Z. 2002. The immunosuppressive activity of peptide fragments of vaccinia virus C10L protein and a hypothesis on the role of this protein in the viral invasion. Peptides 23:823–834. doi:10.1016/S0196-9781(02)00006-2 PubMed DOI

Herbert MH, Squire CJ, Mercer AA. 2015. Poxviral ankyrin proteins. Viruses 7:709–738. doi:10.3390/v7020709 PubMed DOI PMC

Yang Z, Cao S, Martens CA, Porcella SF, Xie Z, Ma M, Shen B, Moss B. 2015. Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. J Virol 89:6874–6886. doi:10.1128/JVI.00528-15 PubMed DOI PMC

Boyle KA, Greseth MD, Traktman P. 2015. Genetic confirmation that the H5 protein is required for vaccinia virus DNA replication. J Virol 89:6312–6327. doi:10.1128/JVI.00445-15 PubMed DOI PMC

Rabaan AA, Abas AH, Tallei TE, Al‐Zaher MA, Al‐Sheef NM, Fatimawali, Al‐Nass EZ, Al‐Ebrahim EA, Effendi Y, Idroes R, Alhabib MF, Al‐Fheid HA, Adam AA, Bin Emran T. 2023. Monkeypox outbreak 2022: what we know so far and its potential drug targets and management strategies. J Med Virol 95:e28306. doi:10.1002/jmv.28306 PubMed DOI

Rach EA, Yuan H-Y, Majoros WH, Tomancak P, Ohler U. 2009. Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome. Genome Biol 10:R73. doi:10.1186/gb-2009-10-7-r73 PubMed DOI PMC

Haberle V, Forrest ARR, Hayashizaki Y, Carninci P, Lenhard B. 2015. CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res 43:e51. doi:10.1093/nar/gkv054 PubMed DOI PMC

Christen LA, Piacente S, Mohamed MR, Niles EG. 2008. Vaccinia virus early gene transcription termination factors VTF and Rap94 interact with the U9 termination motif in the nascent RNA in a transcription ternary complex. Virology (Auckl) 376:225–235. doi:10.1016/j.virol.2008.03.031 PubMed DOI PMC

Yang Z, Moss B. 2009. Interaction of the vaccinia virus RNA polymerase-associated 94-kilodalton protein with the early transcription factor. J Virol 83:12018–12026. doi:10.1128/JVI.01653-09 PubMed DOI PMC

Vopálenský V, Sýkora M, Mělková Z, Mašek T, Pospíšek M. 2020. Transcripts of vaccinia virus postreplicative genes do not contain a 5’ methylguanosine cap. bioRxiv. doi:10.1101/2020.07.15.204867 DOI

Farlow J, Ichou MA, Huggins J, Ibrahim S. 2010. Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus. Virol J 7:110. doi:10.1186/1743-422X-7-110 PubMed DOI PMC

Scarpa F, Sanna D, Azzena I, Cossu P, Locci C, Angeletti S, Maruotti A, Ceccarelli G, Casu M, Fiori PL, Petrosillo N, Ciccozzi M. 2022. Genetic variability of the monkeypox virus clade IIb B.1. J Clin Med 11:6388. doi:10.3390/jcm11216388 PubMed DOI PMC

Ndodo N, Ashcroft J, Lewandowski K, Yinka-Ogunleye A, Chukwu C, Ahmad A, King D, Akinpelu A, Maluquer de Motes C, Ribeca P, Sumner RP, Rambaut A, Chester M, Maishman T, Bamidele O, Mba N, Babatunde O, Aruna O, Pullan ST, Gannon B, Brown CS, Ihekweazu C, Adetifa I, Ulaeto DO. 2023. Distinct monkeypox virus lineages co-circulating in humans before 2022. Nat Med 29:2317–2324. doi:10.1038/s41591-023-02456-8 PubMed DOI PMC

Suspène R, Raymond KA, Boutin L, Guillier S, Lemoine F, Ferraris O, Tournier J-N, Iseni F, Simon-Lorière E, Vartanian J-P. 2023. APOBEC3F is a mutational driver of the human monkeypox virus identified in the 2022 outbreak. J Infect Dis 228:1421–1429. doi:10.1093/infdis/jiad165 PubMed DOI PMC

Delamonica B, Davalos L, Larijani M, Anthony SJ, Liu J, MacCarthy T. 2023. Evolutionary potential ofthe monkeypox genome arising from interactions with human APOBEC3 enzymes. Virus Evol 9:vead047. doi:10.1093/ve/vead047 PubMed DOI PMC

Jahankir MJB, Sounderrajan V, Rao SS, Thangam T, Kamariah N, Kurumbati A, Harshavardhan S, Ashwin A, Jeyaraj S, Parthasarathy K. 2024. Accelerated mutation by host protein APOBEC in monkeypox virus. Gene Rep 34:101878. doi:10.1016/j.genrep.2024.101878 DOI

Pfaff F, Hoffmann D, Beer M. 2022. Monkeypox genomic surveillance will challenge lessons learned from SARS-CoV-2. The Lancet 400:22–23. doi:10.1016/S0140-6736(22)01106-0 PubMed DOI PMC

Gigante CM, Korber B, Seabolt MH, Wilkins K, Davidson W, Rao AK, Zhao H, Smith TG, Hughes CM, Minhaj F, et al. . 2022. Multiple lineages of monkeypox virus detected in the United States, 2021-2022. Science 378:560–565. doi:10.1126/science.add4153 PubMed DOI PMC

Lopera JG, Falendysz EA, Rocke TE, Osorio JE. 2015. Attenuation of monkeypox virus by deletion of genomic regions. Virology (Auckl) 475:129–138. doi:10.1016/j.virol.2014.11.009 PubMed DOI PMC

Li H, Zhang H, Ding K, Wang X-H, Sun G-Y, Liu Z-X, Luo Y. 2022. The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev 68:1–12. doi:10.1016/j.cytogfr.2022.10.002 PubMed DOI PMC

Baroudy BM, Moss B. 1982. Sequence homologies of diverse length tandem repetitions near ends of vaccinia virus genome suggest unequal crossing over. Nucleic Acids Res 10:5673–5679. doi:10.1093/nar/10.18.5673 PubMed DOI PMC

Qin L, Upton C, Hazes B, Evans DH. 2011. Genomic analysis of the vaccinia virus strain variants found in Dryvax vaccine. J Virol 85:13049–13060. doi:10.1128/JVI.05779-11 PubMed DOI PMC

Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish GF, Rock DL. 2004. The genome of canarypox virus. J Virol 78:353–366. doi:10.1128/jvi.78.1.353-366.2004 PubMed DOI PMC

Desingu PA, Nagarajan K, Sundaresan NR. 2023. Unique tandem repeats in the inverted terminal repeat regions of monkeypox viruses. Microbiol Spectr 11:e0319922. doi:10.1128/spectrum.03199-22 PubMed DOI PMC

Desingu PA, Nagarajan K. 2022. Genomic regions insertion and deletion in monkeypox virus causing multi-country outbreak-2022. bioRxiv. doi:10.1101/2022.06.28.497936 DOI

Lu Z, Berry K, Hu Z, Zhan Y, Ahn T-H, Lin Z. 2021. TSSr: an R package for comprehensive analyses of TSS sequencing data. NAR Genom Bioinform 3:lqab108. doi:10.1093/nargab/lqab108 PubMed DOI PMC

Wyman D, Balderrama-Gutierrez G, Reese F, Jiang S, Rahmanian S, Forner S, Matheos D, Zeng W, Williams B, Trout D, England W, Chu S-H, Spitale RC, Tenner AJ, Wold BJ, Mortazavi A. 2020. A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification. bioRxiv. doi:10.1101/672931 DOI

Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018. doi:10.1093/bioinformatics/btr064 PubMed DOI PMC

Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, Zuzarte PC, Gilpatrick T, Payne A, Quick J, Sadowski N, Holmes N, de Jesus JG, Jones KL, Soulette CM, Snutch TP, Loman N, Paten B, Loose M, Simpson JT, Olsen HE, Brooks AN, Akeson M, Timp W. 2019. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods 16:1297–1305. doi:10.1038/s41592-019-0617-2 PubMed DOI PMC

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 PubMed DOI PMC

Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. 2024. Molecular evolution of 2022 multi-country outbreak-causing monkeypox virus Clade IIb. i Sci 27:108601. doi:10.1016/j.isci.2023.108601 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...