• This record comes from PubMed

Evaluation of Cytotoxicity of the Dental Materials TheraCal LC, TheraCal PT, ApaCal ART and Biodentine Used in Vital Pulp Therapy: In Vitro Study

. 2024 Aug 07 ; 12 (8) : . [epub] 20240807

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA_LF_2024_008 Palacký University Olomouc

(1) Background: The aim of this study was to compare the cytotoxicity of selected resin-modified materials used in direct contact with the dental pulp (TheraCal LC, TheraCal PT, and ApaCal ART) with calcium silicate cement (Biodentine). (2) Methods: The mouse fibroblast Balb/3T3 cell line and the extracts of tested materials in four concentrations were used for the testing. An MTT assay was performed in three independent experiments with six replicates for each concentration of tested material. The cell viability (%) and cytotoxicity were expressed (cytotoxic effect is considered in cases where the cell viability is lower than 70%). The mean of the cell viability and the standard deviation were expressed for each material at all concentrations. ANOVA and Dunnet's post hoc tests were used for the statistical analysis. All of these tests were performed at the 0.05 significance level. (3) Results: At all concentrations, the cell viability was statistically significantly lower (p ≤ 0.002) for all tested materials compared to Biodentine. ApaCal ART showed a high level of cytotoxicity at all concentrations (cell viability lower than 47.71%, p < 0.0001). The same result was found for TheraCal LC at concentrations of 100%, 50% and 25% and TheraCal PT at concentrations of 100% and 50%. TheraCal LC at a 10% concentration (cell viability 68.18%) and TheraCal PT at a 25% concentration (cell viability 60.63%) indicated potential cytotoxicity. TheraCal PT at a 10% concentration was not found to be cytotoxic (cell viability 79.18%, p = 0.095). (4) Conclusion: The resin-modified calcium silicate and calcium phosphate materials showed higher cytotoxic potential, so they should be used with caution when in direct contact with the dental pulp.

See more in PubMed

Innes N.P.T., Frencken J.E., Bjørndal L., Maltz M., Manton D.J., Ricketts D., Van Landuyt K., Banerjee A., Campus G., Doméjean S., et al. Managing Carious Lesions: Consensus Recommendations on Terminology. Adv. Dent. Res. 2016;28:49–57. doi: 10.1177/0022034516639276. PubMed DOI

Duncan H.F., Galler K.M., Tomson P.L., Simon S., El-Karim I., Kundzina R., Krastl G., Dammaschke T., Fransson H., Markvart M., et al. European Society of Endodontology Position Statement: Management of Deep Caries and the Exposed Pulp. Int. Endod. J. 2019;52:923–934. doi: 10.1111/iej.13080. PubMed DOI

Wells C., Dulong C., McCormack S. Vital Pulp Therapy for Endodontic Treatment of Mature Teeth: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines. 2019. [(accessed on 18 April 2024)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK546327/ PubMed

Hanna S.N., Alfayate R.P., Prichard J. Vital Pulp Therapy an Insight over the Available Literature and Future Expectations. Eur. Endod. J. 2020;5:46–53. PubMed PMC

Novotna B., Harvan L., Somolova L., Morozova Y., Voborna I. Osetreni kazu blizkeho zubni dreni a metoda odlozene exkavace. Czech Dent. J. 2021;121:83–89.

Duncan H., El-Karim I.A. Vital Pulp Treatment. Wiley-Blackwell; Hoboken, NJ, USA: 2024.

Alleman D.S., Magne P. A Systematic Approach to Deep Caries Removal End Points: The Peripheral Seal Concept in Adhesive Dentistry. Quintessence Int. 2012;43:197–208. PubMed

Didilescu A.C., Cristache C.M., Andrei M., Voicu G., Perlea P. The Effect of Dental Pulp-Capping Materials on Hard-Tissue Barrier Formation: A Systematic Review and Meta-Analysis. J. Am. Dent. Assoc. 2018;149:903–917.e4. doi: 10.1016/j.adaj.2018.06.003. PubMed DOI

Davaie S., Hooshmand T., Ansarifard S. Different Types of Bioceramics as Dental Pulp Capping Materials: A Systematic Review. Ceram. Int. 2021;47:20781–20792. doi: 10.1016/j.ceramint.2021.04.193. DOI

Krifka S., Seidenader C., Hiller K.A., Schmalz G., Schweikl H. Oxidative Stress and Cytotoxicity Generated by Dental Composites in Human Pulp Cells. Clin. Oral Investig. 2012;16:215–224. doi: 10.1007/s00784-010-0508-5. PubMed DOI

Iaculli F., Rodríguez-Lozano F.J., Briseño-Marroquín B., Wolf T.G., Spagnuolo G., Rengo S. Vital Pulp Therapy of Permanent Teeth with Reversible or Irreversible Pulpitis: An Overview of the Literature. J. Clin. Med. 2022;11:4016. doi: 10.3390/jcm11144016. PubMed DOI PMC

Ha W., Kahler B., Walsh L.J. Classification and Nomenclature of Commercial Hygroscopic Dental Cements. Eur. Endod. J. 2017;2:27. doi: 10.5152/eej.2017.17006. PubMed DOI PMC

Lee S.J., Monsef M., Torabinejad M. Sealing Ability of a Mineral Trioxide Aggregate for Repair of Lateral Root Perforations. J. Endod. 1993;19:541–544. doi: 10.1016/S0099-2399(06)81282-3. PubMed DOI

Cervino G., Laino L., D’Amico C., Russo D., Nucci L., Amoroso G., Gorassini F., Tepedino M., Terranova A., Gambino D., et al. Mineral Trioxide Aggregate Applications in Endodontics: A Review. Eur. J. Dent. 2020;14:683–691. doi: 10.1055/s-0040-1713073. PubMed DOI PMC

Prati C., Gandolfi M.G. Calcium Silicate Bioactive Cements: Biological Perspectives and Clinical Applications. Dent. Mater. 2015;31:351–370. doi: 10.1016/j.dental.2015.01.004. PubMed DOI

Dawood A.E., Parashos P., Wong R.H.K., Reynolds E.C., Manton D.J. Calcium Silicate-Based Cements: Composition, Properties, and Clinical Applications. J. Investig. Clin. Dent. 2017;8:e12195. doi: 10.1111/jicd.12195. PubMed DOI

Kadali N., Krishna Alla R., Guduri V., Av R., Sajjan Mc S., Venkateswara Raju 5 1 Lecturer R. Mineral Trioxide Aggregate: An Overview of Composition, Properties and Clinical Applications. Int. J. Dent. Mater. 2020;2:11–18. doi: 10.37983/IJDM.2020.2103. DOI

Gasperi T.L., da Silveira J.d.A.C., Schmidt T.F., Teixeira C.d.S., Garcia L.d.F.R., Bortoluzzi E.A. Physical-Mechanical Properties of a Resin-Modified Calcium Silicate Material for Pulp Capping. Braz. Dent. J. 2020;31:252–256. doi: 10.1590/0103-6440202003079. PubMed DOI

Chen L., Suh B.I. Cytotoxicity and Biocompatibility of Resin-Free and Resin-Modified Direct Pulp Capping Materials: A State-of-the-Art Review. Dent. Mater. J. 2017;36:1–7. doi: 10.4012/dmj.2016-107. PubMed DOI

Žižka R., Šedý J., Škrdlant J., Kučera P., Čtvrtlík R., Tomáštík J. Kalciumsilikátové Cementy. 1. Část: Vlastnosti a Rozdělení. LKS Časopis České Stomatol. Komory. 2018;28:37–43.

Domingos Pires M., Cordeiro J., Vasconcelos I., Alves M., Quaresma S.A., Ginjeira A., Camilleri J. Effect of Different Manipulations on the Physical, Chemical and Microstructural Characteristics of Biodentine. Dent. Mater. 2021;37:e399–e406. doi: 10.1016/j.dental.2021.03.021. PubMed DOI

Docimo R., Carrante V.F., Costacurta M. The Physical-Mechanical Properties and Biocompatibility of Biodentine: A Review. J. Osseointegration. 2021;13:47–50. doi: 10.23805/JO.2021.13.01.8. DOI

Kadali N.S., Alla R.K., AV R., MC S.S., Raju Mantena S., Raju R.V. An Overview of Composition, Properties, and Applications of Biodentine. Int. J. Dent. Mater. 2021;3:120–126. doi: 10.37983/IJDM.2021.3404. DOI

Awawdeh L., Al-Qudah A., Hamouri H., Chakra R.J. Outcomes of Vital Pulp Therapy Using Mineral Trioxide Aggregate or Biodentine: A Prospective Randomized Clinical Trial. J. Endod. 2018;44:1603–1609. doi: 10.1016/j.joen.2018.08.004. PubMed DOI

Poggio C., Arciola C.R., Beltrami R., Monaco A., Dagna A., Lombardini M., Visai L. Cytocompatibility and Antibacterial Properties of Capping Materials. Sci. World J. 2014;2014:181945. doi: 10.1155/2014/181945. PubMed DOI PMC

Kim Y., Lee D., Song D., Kim H.M., Kim S.Y. Biocompatibility and Bioactivity of Set Direct Pulp Capping Materials on Human Dental Pulp Stem Cells. Materials. 2020;13:3925. doi: 10.3390/ma13183925. PubMed DOI PMC

Sanz J.L., Soler-Doria A., López-García S., García-Bernal D., Rodríguez-Lozano F.J., Lozano A., Llena C., Forner L., Guerrero-Gironés J., Melo M. Comparative Biological Properties and Mineralization Potential of 3 Endodontic Materials for Vital Pulp Therapy: Theracal PT, Theracal LC, and Biodentine on Human Dental Pulp Stem Cells. J. Endod. 2021;47:1896–1906. doi: 10.1016/j.joen.2021.08.001. PubMed DOI

Park S.H., Ye J.R., Asiri N.M., Chae Y.K., Choi S.C., Nam O.H. Biocompatibility and Bioactivity of a Dual-Cured Resin-Based Calcium Silicate Cement: In Vitro and in Vivo Evaluation. J. Endod. 2024;50:235–242. doi: 10.1016/j.joen.2023.11.009. PubMed DOI

Anthrayose P., Aggarwal A., Yadav S., Nawal R.R., Talwar S. Microscopic and Elemental Characterization of Hydrated Dental Pulp Capping Agents. J. Conserv. Dent. Endod. 2021;24:496–501. PubMed PMC

Bakir Ş., Bakir E.P., Akbiyik S.Y. Evaluation of the Bond Strength of Resin-Modified Glass Ionomer Enhanced with Bioactive Glass to Composite Resin with Different Dental Adhesive Systems. Anal. Quant. Cytopathol. Histopathol. 2021;43:235–241.

Akbiyik S.Y., Bakir E.P., Bakir S. Evaluation of the Bond Strength of Different Pulp Capping Materials to Dental Adhesive Systems: An In Vitro Study. J. Adv. Oral Res. 2021;12:286–295. doi: 10.1177/2320206821997983. DOI

Karadas M., Köse T.E., Atıcı M.G. Comparison of Radiopacity of Dentin Replacement Materials. J. Dent. Mater. Tech. 2020;9:195–202.

Alazrag M.A., Abu-Seida A.M., El-Batouty K.M., El Ashry S.H. Marginal Adaptation, Solubility and Biocompatibility of TheraCal LC Compared with MTA-Angelus and Biodentine as a Furcation Perforation Repair Material. BMC Oral Health. 2020;20:298. doi: 10.1186/s12903-020-01289-y. PubMed DOI PMC

Javier Rodríguez-Lozano F., López-García S., García-Bernal D., Sanz J.L., Lozano A., Pecci-Lloret M.P., Melo M., López-Ginés C., Forner L., Rodríguez-Lozano F.J. Cytocompatibility and Bioactive Properties of the New Dual-Curing Resin-Modified Calcium Silicate-Based Material for Vital Pulp Therapy. Clin. Oral Investig. 2021;25:5009–5024. doi: 10.1007/s00784-021-03811-0. PubMed DOI

The Dentine In A Capsule Or More Article | Septodont Learning. [(accessed on 30 May 2024)]. Available online: https://www.septodontlearning.co.uk/cpd-training/biodentine/the-dentine-in-a-capsule-or-more-article.

ČSN EN ISO 10993-5 (855220) [(accessed on 30 May 2024)]. Available online: https://www.technicke-normy-csn.cz/csn-en-iso-10993-5-855220-232664.html.

ISO 10993-5:2009-Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. [(accessed on 30 May 2024)]. Available online: https://www.iso.org/standard/36406.html.

Lozano-Guillén A., López-García S., Rodríguez-Lozano J.F., Luis Sanz J., Lozano A., Llena C., Forner L. Comparative Cytocompatibility of the New Calcium Silicate-Based Cement NeoPutty versus NeoMTA Plus and MTA on Human Dental Pulp Cells: An in Vitro Study. Clin. Oral Investig. 2022;26:7219–7228. doi: 10.1007/s00784-022-04682-9. PubMed DOI PMC

Corral C., Negrete P., Estay J., Osorio S., Covarrubias C., de Junior O.B., Barud H. Radiopacity and Chemical Assessment of New Commercial Calcium Silicate-Based Cements. Int. J. Odontostomatol. 2018;12:262–268. doi: 10.4067/S0718-381X2018000300262. DOI

Esen M., Guven Y., Seyhan M.F., Ersev H., Tuna-Ince E.B. Evaluation of the Genotoxicity, Cytotoxicity, and Bioactivity of Calcium Silicate-Based Cements. BMC Oral Health. 2024;24:119. doi: 10.1186/s12903-024-03891-w. PubMed DOI PMC

Birant S., Gokalp M., Duran Y., Koruyucu M., Akkoc T., Seymen F. Cytotoxicity of NeoMTA Plus, ProRoot MTA and Biodentine on Human Dental Pulp Stem Cells. J. Dent. Sci. 2021;16:971–979. doi: 10.1016/j.jds.2020.10.009. PubMed DOI PMC

Lang O., Kohidai L., Kohidai Z., Dobo-Nagy C., Csomo K.B., Lajko M., Mozes M., Keki S., Deak G., Tian K.V., et al. Cell Physiological Effects of Glass Ionomer Cements on Fibroblast Cells. Toxicol. Vitr. 2019;61:104627. doi: 10.1016/j.tiv.2019.104627. PubMed DOI

Quiñonez-Ruvalcaba F., Bermúdez-Jiménez C., Aguilera-Galavíz L.A., Villanueva-Sánchez F.G., García-Cruz S., Gaitán-Fonseca C. Histopathological Biocompatibility Evaluation of TheraCal PT, NeoMTA, and MTA Angelus in a Murine Model. J. Funct. Biomater. 2023;14:202. doi: 10.3390/jfb14040202. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...