High yield seedless synthesis of mini gold nanorods: partial silver decoupling allows effective nanorod elongation with tunable surface plasmon resonance beyond 1000 nm and CTAB-free functional coating for mTHPC conjugation
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
39323420
PubMed Central
PMC11421551
DOI
10.1039/d4na00507d
PII: d4na00507d
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Gold nanorods with small dimensions demonstrate better cellular uptake and absorption efficiency. The ability to synthesize gold nanorods while maintaining a tunable high aspect ratio is challenging as it requires careful control of reaction conditions, often employing additional steps such as pH modification or the use of polymeric additives. We demonstrate a seedless approach for the synthesis of mini (width < 10 nm) gold nanorods with tunable longitudinal surface plasmon resonance from ∼700 nm to >1000 nm and aspect ratios ranging from ∼3 to ∼7 without the use of any polymeric additives or pH modification. A single mild reducing agent, hydroquinone, allowed for up to ∼98% reaction yield from a gold precursor. A mechanism for elongation is proposed based on partial silver decoupling from the reaction. Finally, the particles were coated with various capping agents to allow functionalization and conjugation of mTHPC drug molecules, which are used in photodynamic treatments, and cytotoxic CTAB was removed to increase their biocompatibility.
See more in PubMed
Narayan N. Meiyazhagan A. Vajtai R. Materials. 2019;12:1–12. doi: 10.3390/ma12213602. PubMed DOI PMC
Gao C. Lyu F. Yin Y. Chem. Rev. 2021;121:834–881. doi: 10.1021/acs.chemrev.0c00237. PubMed DOI
McNamara K. Tofail S. A. M. Adv. Phys.: X. 2017;2:54–88.
Nikzamir M. Akbarzadeh A. Panahi Y. J. Drug Deliv. Sci. Technol. 2021;61:102316. doi: 10.1016/j.jddst.2020.102316. DOI
Saha K. Agasti S. S. Kim C. Li X. Rotello V. M. Chem. Rev. 2012;112:2739–2779. doi: 10.1021/cr2001178. PubMed DOI PMC
Kumar H. Kuča K. Bhatia S. K. Saini K. Kaushal A. Verma R. Bhalla T. C. Kumar D. Sensors. 2020;20:1–19. PubMed PMC
Bogart L. K. Pourroy G. Murphy C. J. Puntes V. Pellegrino T. Rosenblum D. Peer D. Lévy R. ACS Nano. 2014;8:3107–3122. doi: 10.1021/nn500962q. PubMed DOI PMC
Phan T. T. V. Huynh T. C. Manivasagan P. Mondal S. Oh J. Nanomaterials. 2020;10(1):66. doi: 10.3390/nano10010066. PubMed DOI PMC
Samanta A. Banerjee S. Liu Y. Nanoscale. 2015;7:2210–2220. doi: 10.1039/C4NR06283C. PubMed DOI
Altug H. Oh S. H. Maier S. A. Homola J. Nat. Nanotechnol. 2022;17:5–16. doi: 10.1038/s41565-021-01045-5. PubMed DOI
Dreaden E. C. Alkilany A. M. Huang X. Murphy C. J. El-Sayed M. A. Chem. Soc. Rev. 2012;41:2740–2779. doi: 10.1039/C1CS15237H. PubMed DOI PMC
Kus-liśkiewicz M. Fickers P. Tahar I. B. Int. J. Mol. Sci. 2021;22(20):10952. doi: 10.3390/ijms222010952. PubMed DOI PMC
Szekeres G. P. Kneipp J. Front. Chem. 2019;7:1–10. doi: 10.3389/fchem.2019.00001. PubMed DOI PMC
Tian F. Bonnier F. Casey A. Shanahan A. E. Byrne H. J. Anal. Methods. 2014;6:9116–9123. doi: 10.1039/C4AY02112F. DOI
Gad G. M. A. Hegazy M. A. Mater. Res. Express. 2019;6:085024. doi: 10.1088/2053-1591/ab1bb8. DOI
Gravelsins S. Park M. J. Niewczas M. Hyeong S. K. Lee S. K. Ahmed A. Dhirani A. A. Commun. Chem. 2022;5:103. doi: 10.1038/s42004-022-00723-2. PubMed DOI PMC
Singh R. K. Behera S. S. Singh K. R. Mishra S. Panigrahi B. Sahoo T. R. Parhi P. K. Mandal D. J. Photochem. Photobiol., A. 2020;400:112704. doi: 10.1016/j.jphotochem.2020.112704. DOI
Luna M. Cruceira Á. Díaz A. Gatica J. M. Mosquera M. J. Environ. Technol. Innov. 2023;30:103070. doi: 10.1016/j.eti.2023.103070. DOI
Yafout M. Ousaid A. Khayati Y. El Otmani I. S. Sci. Afr. 2021;11:e00685.
Kong F. Y. Zhang J. W. Li R. F. Wang Z. X. Wang W. J. Wang W. Molecules. 2017;22(9):1445. doi: 10.3390/molecules22091445. PubMed DOI PMC
Pan L. Liu J. Shi J. ACS Appl. Mater. Interfaces. 2017;9:15952–15961. doi: 10.1021/acsami.7b03017. PubMed DOI
Vines J. B. Yoon J. H. Ryu N. E. Lim D. J. Park H. Front. Chem. 2019;7:1–16. doi: 10.3389/fchem.2019.00001. PubMed DOI PMC
Carabineiro S. A. C. Molecules. 2017;22(5):857. doi: 10.3390/molecules22050857. PubMed DOI PMC
Hu X. Zhang Y. Ding T. Liu J. Zhao H. Front. Bioeng. Biotechnol. 2020;8:1–17. doi: 10.3389/fbioe.2020.00001. PubMed DOI PMC
Zheng J. Cheng X. Zhang H. Bai X. Ai R. Shao L. Wang J. Chem. Rev. 2021;121:13342–13453. doi: 10.1021/acs.chemrev.1c00422. PubMed DOI
D'Elia V. Rubio-Retama J. Ortega-Ojeda F. E. García-Ruiz C. Montalvo G. Colloids Surf., A. 2018;557:43–50. doi: 10.1016/j.colsurfa.2018.05.068. DOI
Moros M. Lewinska A. Merola F. Ferraro P. Wnuk M. Tino A. Tortiglione C. ACS Appl. Mater. Interfaces. 2020;12:13718–13730. doi: 10.1021/acsami.0c02022. PubMed DOI
Liao S. Yue W. Cai S. Tang Q. Lu W. Huang L. Qi T. Liao J. Front. Pharmacol. 2021;12:664123. doi: 10.3389/fphar.2021.664123. PubMed DOI PMC
Lebepe T. C. Parani S. Oluwafemi O. S. Nanomaterials. 2020;10:1–24. doi: 10.3390/nano10112149. PubMed DOI PMC
Jana N. R. Gearheart L. Murphy C. J. J. Phys. Chem. B. 2001;105:4065–4067. doi: 10.1021/jp0107964. DOI
Nikoobakht B. El-Sayed M. A. Chem. Mater. 2003;15:1957–1962. doi: 10.1021/cm020732l. DOI
Sánchez-Iglesias A. Jenkinson K. Bals S. Liz-Marzán L. M. J. Phys. Chem. C. 2021;125:23937–23944. doi: 10.1021/acs.jpcc.1c07284. PubMed DOI PMC
Scarabelli L. Sánchez-Iglesias A. Pérez-Juste J. Liz-Marzán L. M. J. Phys. Chem. Lett. 2015;6:4270–4279. doi: 10.1021/acs.jpclett.5b02123. PubMed DOI
Ye X. Jin L. Caglayan H. Chen J. Xing G. Zheng C. Doan-Nguyen V. Kang Y. Engheta N. Kagan C. R. Murray C. B. ACS Nano. 2012;6:2804–2817. doi: 10.1021/nn300315j. PubMed DOI
Vigderman L. Zubarev E. R. Chem. Mater. 2013;25:1450–1457. doi: 10.1021/cm303661d. DOI
Xu X. Zhao Y. Xue X. Huo S. Chen F. Zou G. Liang X. J. J. Mater. Chem. A. 2014;2:3528–3535. doi: 10.1039/C3TA13905K. DOI
Liu K. Bu Y. Zheng Y. Jiang X. Yu A. Wang H. Chem.–Eur. J. 2017;23:3291–3299. doi: 10.1002/chem.201605617. PubMed DOI
Malik A. Khan J. M. Alhomida A. S. Ola M. S. Alshehri M. A. Ahmad A. Chem. Pap. 2022;76:6073–6095. doi: 10.1007/s11696-022-02351-5. DOI
Song J. Yang X. Jacobson O. Huang P. Sun X. Lin L. Yan X. Niu G. Ma Q. Chen X. Adv. Mater. 2015;27:4910–4917. doi: 10.1002/adma.201502486. PubMed DOI
Chang H. H. Murphy C. J. Chem. Mater. 2018;30:1427–1435. doi: 10.1021/acs.chemmater.7b05310. PubMed DOI PMC
Ali M. R. K. Snyder B. El-Sayed M. A. Langmuir. 2012;28:9807–9815. doi: 10.1021/la301387p. PubMed DOI
Requejo K. I. Liopo A. V. Derry P. J. Zubarev E. R. Langmuir. 2017;33:12681–12688. doi: 10.1021/acs.langmuir.7b02942. PubMed DOI
Jia H. Fang C. Zhu X. M. Ruan Q. Wang Y. X. J. Wang J. Langmuir. 2015;31:7418–7426. doi: 10.1021/acs.langmuir.5b01444. PubMed DOI
Li Z. Tang S. Wang B. Li Y. Huang H. Wang H. Li P. Li C. Chu P. K. Yu X. F. ACS Biomater. Sci. Eng. 2016;2:789–797. doi: 10.1021/acsbiomaterials.5b00538. PubMed DOI
Xu D. Mao J. He Y. Yeung E. S. J. Mater. Chem. C. 2014;2:4989–4996. doi: 10.1039/C4TC00483C. DOI
Seibt S. Zhang H. Mudie S. Förster S. Mulvaney P. J. Phys. Chem. C. 2021;125:19947–19960. doi: 10.1021/acs.jpcc.1c06778. DOI
Xiong Y. Xia Y. Adv. Mater. 2007;19:3385–3391. doi: 10.1002/adma.200701301. DOI
González-Rubio G. Llombart P. Zhou J. Geiss H. Peña-Rodríguez O. Gai H. Ni B. Rosenberg R. Cölfen H. Chem. Mater. 2024;36:1982–1997. doi: 10.1021/acs.chemmater.3c02866. DOI
Gole A. Stone J. W. Gemmill W. R. Loye H. C. Z. Murphy C. J. Langmuir. 2008;24:6232–6237. doi: 10.1021/la703975y. PubMed DOI
Khlebtsov B. N. Khanadeev V. A. Khlebtsov N. G. J. Phys. Chem. C. 2008;112:12760–12768. doi: 10.1021/jp802874x. DOI
Singh Z. Singh I. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-018-37186-2. PubMed DOI PMC
Nunes Á. M. Falagan-Lotsch P. Roslend A. Meneghetti M. R. Murphy C. J. Nanoscale Adv. 2022;5:733–741. doi: 10.1039/D2NA00694D. PubMed DOI PMC
Murphy C. J. Chang H. H. Falagan-Lotsch P. Gole M. T. Hofmann D. M. Hoang K. N. L. McClain S. M. Meyer S. M. Turner J. G. Unnikrishnan M. Wu M. Zhang X. Zhang Y. Acc. Chem. Res. 2019;52:2124–2135. doi: 10.1021/acs.accounts.9b00288. PubMed DOI PMC
Del Caño R. Gisbert-González J. M. González-Rodríguez J. Sánchez-Obrero G. Madueño R. Blázquez M. Pineda T. Nanoscale. 2020;12:658–668. doi: 10.1039/C9NR09137H. PubMed DOI
Gole A. Murphy C. J. Chem. Mater. 2005;17:1325–1330. doi: 10.1021/cm048297d. DOI
Mehtala J. G. Zemlyanov D. Y. Max J. P. Kadasala N. Zhao S. Wei A. Langmuir. 2014;30:13727–13730. doi: 10.1021/la5029542. PubMed DOI PMC
Papaioannou L. Angelopoulou A. Hatziantoniou S. Papadimitriou M. Apostolou P. Papasotiriou I. Avgoustakis K. AAPS PharmSciTech. 2019;20 doi: 10.1208/s12249-018-1226-6. doi: 10.1208/s12249-018-1226-6. PubMed DOI
Varon E. Blumrosen G. Sinvani M. Haimov E. Polani S. Natan M. Shoval I. Jacob A. Atkins A. Zitoun D. Shefi O. Int. J. Mol. Sci. 2022;23(4):2286. doi: 10.3390/ijms23042286. PubMed DOI PMC
Hantsche H. Adv. Mater. 1993;5:778. doi: 10.1002/adma.19930051035. DOI
Wagner C. D., Riggs W. M., Davis L. E., Moulder J. F. and Muilenberg G. E., Handbook of X-ray Photoelectron Spectroscopy, PerkinElmer Corp., 1979, vol. 192
Tebbe M. Kuttner C. Männel M. Fery A. Chanana M. ACS Appl. Mater. Interfaces. 2015;7:5984–5991. doi: 10.1021/acsami.5b00335. PubMed DOI PMC
Wei M. Z. Deng T. S. Zhang Q. Cheng Z. Li S. ACS Omega. 2021;6:9188–9195. doi: 10.1021/acsomega.1c00510. PubMed DOI PMC
Tong W. Walsh M. J. Mulvaney P. Etheridge J. Funston A. M. J. Phys. Chem. C. 2017;121:3549–3559. doi: 10.1021/acs.jpcc.6b10343. DOI
Rodríguez-Fernández J. Pérez-Juste J. Mulvaney P. Liz-Marzán L. M. J. Phys. Chem. B. 2005;109:14257–14261. doi: 10.1021/jp052516g. PubMed DOI
Ott A. Bhargava S. K. O'Mullane A. P. Surf. Sci. 2012;606:L5–L9. doi: 10.1016/j.susc.2011.09.012. DOI