• This record comes from PubMed

High yield seedless synthesis of mini gold nanorods: partial silver decoupling allows effective nanorod elongation with tunable surface plasmon resonance beyond 1000 nm and CTAB-free functional coating for mTHPC conjugation

. 2024 Sep 24 ; 6 (19) : 4831-4841. [epub] 20240718

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Gold nanorods with small dimensions demonstrate better cellular uptake and absorption efficiency. The ability to synthesize gold nanorods while maintaining a tunable high aspect ratio is challenging as it requires careful control of reaction conditions, often employing additional steps such as pH modification or the use of polymeric additives. We demonstrate a seedless approach for the synthesis of mini (width < 10 nm) gold nanorods with tunable longitudinal surface plasmon resonance from ∼700 nm to >1000 nm and aspect ratios ranging from ∼3 to ∼7 without the use of any polymeric additives or pH modification. A single mild reducing agent, hydroquinone, allowed for up to ∼98% reaction yield from a gold precursor. A mechanism for elongation is proposed based on partial silver decoupling from the reaction. Finally, the particles were coated with various capping agents to allow functionalization and conjugation of mTHPC drug molecules, which are used in photodynamic treatments, and cytotoxic CTAB was removed to increase their biocompatibility.

See more in PubMed

Narayan N. Meiyazhagan A. Vajtai R. Materials. 2019;12:1–12. doi: 10.3390/ma12213602. PubMed DOI PMC

Gao C. Lyu F. Yin Y. Chem. Rev. 2021;121:834–881. doi: 10.1021/acs.chemrev.0c00237. PubMed DOI

McNamara K. Tofail S. A. M. Adv. Phys.: X. 2017;2:54–88.

Nikzamir M. Akbarzadeh A. Panahi Y. J. Drug Deliv. Sci. Technol. 2021;61:102316. doi: 10.1016/j.jddst.2020.102316. DOI

Saha K. Agasti S. S. Kim C. Li X. Rotello V. M. Chem. Rev. 2012;112:2739–2779. doi: 10.1021/cr2001178. PubMed DOI PMC

Kumar H. Kuča K. Bhatia S. K. Saini K. Kaushal A. Verma R. Bhalla T. C. Kumar D. Sensors. 2020;20:1–19. PubMed PMC

Bogart L. K. Pourroy G. Murphy C. J. Puntes V. Pellegrino T. Rosenblum D. Peer D. Lévy R. ACS Nano. 2014;8:3107–3122. doi: 10.1021/nn500962q. PubMed DOI PMC

Phan T. T. V. Huynh T. C. Manivasagan P. Mondal S. Oh J. Nanomaterials. 2020;10(1):66. doi: 10.3390/nano10010066. PubMed DOI PMC

Samanta A. Banerjee S. Liu Y. Nanoscale. 2015;7:2210–2220. doi: 10.1039/C4NR06283C. PubMed DOI

Altug H. Oh S. H. Maier S. A. Homola J. Nat. Nanotechnol. 2022;17:5–16. doi: 10.1038/s41565-021-01045-5. PubMed DOI

Dreaden E. C. Alkilany A. M. Huang X. Murphy C. J. El-Sayed M. A. Chem. Soc. Rev. 2012;41:2740–2779. doi: 10.1039/C1CS15237H. PubMed DOI PMC

Kus-liśkiewicz M. Fickers P. Tahar I. B. Int. J. Mol. Sci. 2021;22(20):10952. doi: 10.3390/ijms222010952. PubMed DOI PMC

Szekeres G. P. Kneipp J. Front. Chem. 2019;7:1–10. doi: 10.3389/fchem.2019.00001. PubMed DOI PMC

Tian F. Bonnier F. Casey A. Shanahan A. E. Byrne H. J. Anal. Methods. 2014;6:9116–9123. doi: 10.1039/C4AY02112F. DOI

Gad G. M. A. Hegazy M. A. Mater. Res. Express. 2019;6:085024. doi: 10.1088/2053-1591/ab1bb8. DOI

Gravelsins S. Park M. J. Niewczas M. Hyeong S. K. Lee S. K. Ahmed A. Dhirani A. A. Commun. Chem. 2022;5:103. doi: 10.1038/s42004-022-00723-2. PubMed DOI PMC

Singh R. K. Behera S. S. Singh K. R. Mishra S. Panigrahi B. Sahoo T. R. Parhi P. K. Mandal D. J. Photochem. Photobiol., A. 2020;400:112704. doi: 10.1016/j.jphotochem.2020.112704. DOI

Luna M. Cruceira Á. Díaz A. Gatica J. M. Mosquera M. J. Environ. Technol. Innov. 2023;30:103070. doi: 10.1016/j.eti.2023.103070. DOI

Yafout M. Ousaid A. Khayati Y. El Otmani I. S. Sci. Afr. 2021;11:e00685.

Kong F. Y. Zhang J. W. Li R. F. Wang Z. X. Wang W. J. Wang W. Molecules. 2017;22(9):1445. doi: 10.3390/molecules22091445. PubMed DOI PMC

Pan L. Liu J. Shi J. ACS Appl. Mater. Interfaces. 2017;9:15952–15961. doi: 10.1021/acsami.7b03017. PubMed DOI

Vines J. B. Yoon J. H. Ryu N. E. Lim D. J. Park H. Front. Chem. 2019;7:1–16. doi: 10.3389/fchem.2019.00001. PubMed DOI PMC

Carabineiro S. A. C. Molecules. 2017;22(5):857. doi: 10.3390/molecules22050857. PubMed DOI PMC

Hu X. Zhang Y. Ding T. Liu J. Zhao H. Front. Bioeng. Biotechnol. 2020;8:1–17. doi: 10.3389/fbioe.2020.00001. PubMed DOI PMC

Zheng J. Cheng X. Zhang H. Bai X. Ai R. Shao L. Wang J. Chem. Rev. 2021;121:13342–13453. doi: 10.1021/acs.chemrev.1c00422. PubMed DOI

D'Elia V. Rubio-Retama J. Ortega-Ojeda F. E. García-Ruiz C. Montalvo G. Colloids Surf., A. 2018;557:43–50. doi: 10.1016/j.colsurfa.2018.05.068. DOI

Moros M. Lewinska A. Merola F. Ferraro P. Wnuk M. Tino A. Tortiglione C. ACS Appl. Mater. Interfaces. 2020;12:13718–13730. doi: 10.1021/acsami.0c02022. PubMed DOI

Liao S. Yue W. Cai S. Tang Q. Lu W. Huang L. Qi T. Liao J. Front. Pharmacol. 2021;12:664123. doi: 10.3389/fphar.2021.664123. PubMed DOI PMC

Lebepe T. C. Parani S. Oluwafemi O. S. Nanomaterials. 2020;10:1–24. doi: 10.3390/nano10112149. PubMed DOI PMC

Jana N. R. Gearheart L. Murphy C. J. J. Phys. Chem. B. 2001;105:4065–4067. doi: 10.1021/jp0107964. DOI

Nikoobakht B. El-Sayed M. A. Chem. Mater. 2003;15:1957–1962. doi: 10.1021/cm020732l. DOI

Sánchez-Iglesias A. Jenkinson K. Bals S. Liz-Marzán L. M. J. Phys. Chem. C. 2021;125:23937–23944. doi: 10.1021/acs.jpcc.1c07284. PubMed DOI PMC

Scarabelli L. Sánchez-Iglesias A. Pérez-Juste J. Liz-Marzán L. M. J. Phys. Chem. Lett. 2015;6:4270–4279. doi: 10.1021/acs.jpclett.5b02123. PubMed DOI

Ye X. Jin L. Caglayan H. Chen J. Xing G. Zheng C. Doan-Nguyen V. Kang Y. Engheta N. Kagan C. R. Murray C. B. ACS Nano. 2012;6:2804–2817. doi: 10.1021/nn300315j. PubMed DOI

Vigderman L. Zubarev E. R. Chem. Mater. 2013;25:1450–1457. doi: 10.1021/cm303661d. DOI

Xu X. Zhao Y. Xue X. Huo S. Chen F. Zou G. Liang X. J. J. Mater. Chem. A. 2014;2:3528–3535. doi: 10.1039/C3TA13905K. DOI

Liu K. Bu Y. Zheng Y. Jiang X. Yu A. Wang H. Chem.–Eur. J. 2017;23:3291–3299. doi: 10.1002/chem.201605617. PubMed DOI

Malik A. Khan J. M. Alhomida A. S. Ola M. S. Alshehri M. A. Ahmad A. Chem. Pap. 2022;76:6073–6095. doi: 10.1007/s11696-022-02351-5. DOI

Song J. Yang X. Jacobson O. Huang P. Sun X. Lin L. Yan X. Niu G. Ma Q. Chen X. Adv. Mater. 2015;27:4910–4917. doi: 10.1002/adma.201502486. PubMed DOI

Chang H. H. Murphy C. J. Chem. Mater. 2018;30:1427–1435. doi: 10.1021/acs.chemmater.7b05310. PubMed DOI PMC

Ali M. R. K. Snyder B. El-Sayed M. A. Langmuir. 2012;28:9807–9815. doi: 10.1021/la301387p. PubMed DOI

Requejo K. I. Liopo A. V. Derry P. J. Zubarev E. R. Langmuir. 2017;33:12681–12688. doi: 10.1021/acs.langmuir.7b02942. PubMed DOI

Jia H. Fang C. Zhu X. M. Ruan Q. Wang Y. X. J. Wang J. Langmuir. 2015;31:7418–7426. doi: 10.1021/acs.langmuir.5b01444. PubMed DOI

Li Z. Tang S. Wang B. Li Y. Huang H. Wang H. Li P. Li C. Chu P. K. Yu X. F. ACS Biomater. Sci. Eng. 2016;2:789–797. doi: 10.1021/acsbiomaterials.5b00538. PubMed DOI

Xu D. Mao J. He Y. Yeung E. S. J. Mater. Chem. C. 2014;2:4989–4996. doi: 10.1039/C4TC00483C. DOI

Seibt S. Zhang H. Mudie S. Förster S. Mulvaney P. J. Phys. Chem. C. 2021;125:19947–19960. doi: 10.1021/acs.jpcc.1c06778. DOI

Xiong Y. Xia Y. Adv. Mater. 2007;19:3385–3391. doi: 10.1002/adma.200701301. DOI

González-Rubio G. Llombart P. Zhou J. Geiss H. Peña-Rodríguez O. Gai H. Ni B. Rosenberg R. Cölfen H. Chem. Mater. 2024;36:1982–1997. doi: 10.1021/acs.chemmater.3c02866. DOI

Gole A. Stone J. W. Gemmill W. R. Loye H. C. Z. Murphy C. J. Langmuir. 2008;24:6232–6237. doi: 10.1021/la703975y. PubMed DOI

Khlebtsov B. N. Khanadeev V. A. Khlebtsov N. G. J. Phys. Chem. C. 2008;112:12760–12768. doi: 10.1021/jp802874x. DOI

Singh Z. Singh I. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-018-37186-2. PubMed DOI PMC

Nunes Á. M. Falagan-Lotsch P. Roslend A. Meneghetti M. R. Murphy C. J. Nanoscale Adv. 2022;5:733–741. doi: 10.1039/D2NA00694D. PubMed DOI PMC

Murphy C. J. Chang H. H. Falagan-Lotsch P. Gole M. T. Hofmann D. M. Hoang K. N. L. McClain S. M. Meyer S. M. Turner J. G. Unnikrishnan M. Wu M. Zhang X. Zhang Y. Acc. Chem. Res. 2019;52:2124–2135. doi: 10.1021/acs.accounts.9b00288. PubMed DOI PMC

Del Caño R. Gisbert-González J. M. González-Rodríguez J. Sánchez-Obrero G. Madueño R. Blázquez M. Pineda T. Nanoscale. 2020;12:658–668. doi: 10.1039/C9NR09137H. PubMed DOI

Gole A. Murphy C. J. Chem. Mater. 2005;17:1325–1330. doi: 10.1021/cm048297d. DOI

Mehtala J. G. Zemlyanov D. Y. Max J. P. Kadasala N. Zhao S. Wei A. Langmuir. 2014;30:13727–13730. doi: 10.1021/la5029542. PubMed DOI PMC

Papaioannou L. Angelopoulou A. Hatziantoniou S. Papadimitriou M. Apostolou P. Papasotiriou I. Avgoustakis K. AAPS PharmSciTech. 2019;20 doi: 10.1208/s12249-018-1226-6. doi: 10.1208/s12249-018-1226-6. PubMed DOI

Varon E. Blumrosen G. Sinvani M. Haimov E. Polani S. Natan M. Shoval I. Jacob A. Atkins A. Zitoun D. Shefi O. Int. J. Mol. Sci. 2022;23(4):2286. doi: 10.3390/ijms23042286. PubMed DOI PMC

Hantsche H. Adv. Mater. 1993;5:778. doi: 10.1002/adma.19930051035. DOI

Wagner C. D., Riggs W. M., Davis L. E., Moulder J. F. and Muilenberg G. E., Handbook of X-ray Photoelectron Spectroscopy, PerkinElmer Corp., 1979, vol. 192

Tebbe M. Kuttner C. Männel M. Fery A. Chanana M. ACS Appl. Mater. Interfaces. 2015;7:5984–5991. doi: 10.1021/acsami.5b00335. PubMed DOI PMC

Wei M. Z. Deng T. S. Zhang Q. Cheng Z. Li S. ACS Omega. 2021;6:9188–9195. doi: 10.1021/acsomega.1c00510. PubMed DOI PMC

Tong W. Walsh M. J. Mulvaney P. Etheridge J. Funston A. M. J. Phys. Chem. C. 2017;121:3549–3559. doi: 10.1021/acs.jpcc.6b10343. DOI

Rodríguez-Fernández J. Pérez-Juste J. Mulvaney P. Liz-Marzán L. M. J. Phys. Chem. B. 2005;109:14257–14261. doi: 10.1021/jp052516g. PubMed DOI

Ott A. Bhargava S. K. O'Mullane A. P. Surf. Sci. 2012;606:L5–L9. doi: 10.1016/j.susc.2011.09.012. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...