Polyethylene Glycol/Pullulan-Based Carrier for Silymarin Delivery and Its Potential in Biomedical Applications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SKN/SP/568478/2023
The Ministry of Science and Higher Education of the Republic of Poland
APVV-22-0133
The Slovak Research and Development Agency
PubMed
39337459
PubMed Central
PMC11432400
DOI
10.3390/ijms25189972
PII: ijms25189972
Knihovny.cz E-zdroje
- Klíčová slova
- flavonoids, polyethylene glycol, polymers, pullulan, silymarin,
- MeSH
- glukany * chemie MeSH
- koncentrace vodíkových iontů MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nosiče léků * chemie MeSH
- polyethylenglykoly * chemie MeSH
- silymarin * chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glukany * MeSH
- nosiče léků * MeSH
- polyethylenglykoly * MeSH
- pullulan MeSH Prohlížeč
- silymarin * MeSH
Restoring the structures and functions of tissues along with organs in human bodies is a topic gathering attention nowadays. These issues are widely discussed in the context of regenerative medicine. Excipients/delivery systems play a key role in this topic, guaranteeing a positive impact on the effectiveness of the drugs or therapeutic substances supplied. Advances in materials engineering, particularly in the development of hydrogel biomaterials, have influenced the idea of creating an innovative material that could serve as a carrier for active substances while ensuring biocompatibility and meeting all the stringent requirements imposed on medical materials. This work presents the preparation of a natural polymeric material based on pullulan modified with silymarin, which belongs to the group of flavonoids and derives from a plant called Silybum marianum. Under UV light, matrices with a previously prepared composition were crosslinked. Before proceeding to the next stage of the research, the purity of the composition of the matrices was checked using Fourier-transform infrared (FT-IR) spectroscopy. Incubation tests lasting 19 days were carried out using incubation fluids such as simulated body fluid (SBF), Ringer's solution, and artificial saliva. Changes in pH, electrolytic conductivity, and weight were observed and then used to determine the sorption capacity. During incubation, SBF proved to be the most stable fluid, with a pH level of 7.6-7.8. Sorption tests showed a high sorption capacity of samples incubated in both Ringer's solution and artificial saliva (approximately 350%) and SBF (approximately 300%). After incubation, the surface morphology was analyzed using an optical microscope for samples demonstrating the greatest changes over time. The active substance, silymarin, was released using a water bath, and then the antioxidant capacity was determined using the Folin-Ciocâlteu test. The tests carried out proved that the material produced is active and harmless, which was shown by the incubation analysis. The continuous release of the active ingredient increases the biological value of the biomaterial. The material requires further research, including a more detailed assessment of its balance; however, it demonstrates promising potential for further experiments.
Zobrazit více v PubMed
Paolino D., Sinha P., Fresta M., Ferrari M. Encyclopedia of Medical Devices and Instrumentation. John Wiley and Sons, Inc.; Hoboken, NJ, USA: 2006. Drug Delivery Systems.
Tiwari G., Tiwari R., Bannerjee S., Bhati L., Pandey S., Pandey P., Sriwastawa B. Drug Delivery Systems: An Updated Review. Int. J. Pharm. Investig. 2012;2:2. doi: 10.4103/2230-973X.96920. PubMed DOI PMC
Liechty W.B., Kryscio D.R., Slaughter B.V., Peppas N.A. Polymers for Drug Delivery Systems. Annu. Rev. Chem. Biomol. Eng. 2010;1:149–173. doi: 10.1146/annurev-chembioeng-073009-100847. PubMed DOI PMC
Basu A., Kunduru K.R., Doppalapudi S., Domb A.J., Khan W. Poly(Lactic Acid) Based Hydrogels. Adv. Drug Deliv. Rev. 2016;107:192–205. doi: 10.1016/j.addr.2016.07.004. PubMed DOI
Waresindo W.X., Luthfianti H.R., Priyanto A., Hapidin D.A., Edikresnha D., Aimon A.H., Suciati T., Khairurrijal K. Freeze-Thaw Hydrogel Fabrication Method: Basic Principles, Synthesis Parameters, Properties, and Biomedical Applications. Mater. Res. Express. 2023;10:024003. doi: 10.1088/2053-1591/acb98e. DOI
Erkoc C., Yildirim E., Yurtsever M., Okay O. Roadmap to Design Mechanically Robust Copolymer Hydrogels Naturally Cross-Linked by Hydrogen Bonds. Macromolecules. 2022;55:10576–10589. doi: 10.1021/acs.macromol.2c01469. DOI
Chai Q., Jiao Y., Yu X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels. 2017;3:6. doi: 10.3390/gels3010006. PubMed DOI PMC
Sharma P., Negi P., Mahindroo N. Recent Advances in Polymeric Drug Delivery Carrier Systems. Adv. Polym. Biomed. Appl. 2018;10:369–388.
Heller A. Integrated Medical Feedback Systems for Drug Delivery. AIChE J. 2005;51:1054–1066. doi: 10.1002/aic.10489. DOI
Singh R.S., Kaur N., Hassan M., Kennedy J.F. Pullulan in Biomedical Research and Development—A Review. Int. J. Biol. Macromol. 2021;166:694–706. doi: 10.1016/j.ijbiomac.2020.10.227. PubMed DOI
Singh R.S., Kaur N., Singh D., Purewal S.S., Kennedy J.F. Pullulan in Pharmaceutical and Cosmeceutical Formulations: A Review. Int. J. Biol. Macromol. 2023;231:123353. doi: 10.1016/j.ijbiomac.2023.123353. PubMed DOI
Agrawal S., Budhwani D., Gurjar P., Telange D., Lambole V. Pullulan Based Derivatives: Synthesis, Enhanced Physicochemical Properties, and Applications. Drug Deliv. 2022;29:3328–3339. doi: 10.1080/10717544.2022.2144544. PubMed DOI PMC
Cheng K.C., Demirci A., Catchmark J.M. Pullulan: Biosynthesis, Production, and Applications. Appl. Microbiol. Biotechnol. 2011;92:29–44. doi: 10.1007/s00253-011-3477-y. PubMed DOI
Teixeira M.O., Marinho E., Silva C., Antunes J.C., Felgueiras H.P. Pullulan Hydrogels as Drug Release Platforms in Biomedicine. J. Drug Deliv. Sci. Technol. 2023;89:105066. doi: 10.1016/j.jddst.2023.105066. DOI
He C., Zhang Z., Zhang Y., Wang G., Wang C., Wang D., Wei G. Efficient Pullulan Production by Aureobasidium Pullulans Using Cost-Effective Substrates. Int. J. Biol. Macromol. 2021;186:544–553. doi: 10.1016/j.ijbiomac.2021.07.068. PubMed DOI
Ganie S.A., Rather L.J., Li Q. A Review on Anticancer Applications of Pullulan and Pullulan Derivative Nanoparticles. Carbohydr. Polym. Technol. Appl. 2021;2:100115. doi: 10.1016/j.carpta.2021.100115. DOI
Sun S., Cui Y., Yuan B., Dou M., Wang G., Xu H., Wang J., Yin W., Wu D., Peng C. Drug Delivery Systems Based on Polyethylene Glycol Hydrogels for Enhanced Bone Regeneration. Front. Bioeng. Biotechnol. 2023;11:1117647. doi: 10.3389/fbioe.2023.1117647. PubMed DOI PMC
Majewska M., Czeczot H. Flawonoidy w Profilaktyce i Terapii. Farm. Pol. 2009;65:369–377.
Kopustinskiene D.M., Jakstas V., Savickas A., Bernatoniene J. Flavonoids as Anticancer Agents. Nutrients. 2020;12:457. doi: 10.3390/nu12020457. PubMed DOI PMC
Maciejewska P., Skrzypczak N. Moda Na Flawonoidy-o Co Tyle Szumu? Tutoring Gedanensis. 2021;6:55–64. doi: 10.26881/tutg.2021.3.05. DOI
Jucá M.M., Cysne Filho F.M.S., de Almeida J.C., Mesquita D.D.S., Barriga J.R.D.M., Dias K.C.F., Barbosa T.M., Vasconcelos L.C., Leal L.K.A.M., Ribeiro J.E., et al. Flavonoids: Biological Activities and Therapeutic Potential. Nat. Prod. Res. 2020;34:692–705. doi: 10.1080/14786419.2018.1493588. PubMed DOI
Mutha R.E., Tatiya A.U., Surana S.J. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview. Futur. J. Pharm. Sci. 2021;7:25. doi: 10.1186/s43094-020-00161-8. PubMed DOI PMC
Jan S., Abbas N. Himalayan Phytochemicals. Elsevier; Amsterdam, The Netherlands: 2018. Chemistry of Himalayan Phytochemicals; pp. 121–166.
Ekalu A., Dama Habila J. Flavonoids: Isolation, Characterization, and Health Benefits. Beni-Suef Univ. J. Basic Appl. Sci. 2020;9:45. doi: 10.1186/s43088-020-00065-9. DOI
Ninfali P., Antonelli A., Magnani M., Scarpa E.S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients. 2020;12:2534. doi: 10.3390/nu12092534. PubMed DOI PMC
Moscona A. Oseltamivir Resistance—Disabling Our Influenza Defenses. N. Engl. J. Med. 2005;353:2633–2636. doi: 10.1056/NEJMp058291. PubMed DOI
Fan X., Fan Z., Yang Z., Huang T., Tong Y., Yang D., Mao X., Yang M. Flavonoids—Natural Gifts to Promote Health and Longevity. Int. J. Mol. Sci. 2022;23:2176. doi: 10.3390/ijms23042176. PubMed DOI PMC
Xing W., Gao W., Zhao Z., Xu X., Bu H., Su H., Mao G., Chen J. Dietary Flavonoids Intake Contributes to Delay Biological Aging Process: Analysis from NHANES Dataset. J. Transl. Med. 2023;21:492. doi: 10.1186/s12967-023-04321-1. PubMed DOI PMC
Zhu S.Y., Jiang N., Tu J., Yang J., Zhou Y. Antioxidant and Anti-Aging Activities of Silybum Marianum Protein Hydrolysate in Mice Treated with D-Galactose. Biomed. Environ. Sci. 2017;30:623–631. doi: 10.3967/bes2017.083. PubMed DOI
Wellington K., Adis B.J. Silymarin: A Review of Its Clinical Properties in the Management of Hepatic Disorders. BioDrugs. 2001;15:465–489. doi: 10.2165/00063030-200115070-00005. PubMed DOI
Ramasamy K., Agarwal R. Multitargeted Therapy of Cancer by Silymarin. Cancer Lett. 2008;269:352–362. doi: 10.1016/j.canlet.2008.03.053. PubMed DOI PMC
Camini F.C., Costa D.C. Silymarin: Not Just Another Antioxidant. J. Basic Clin. Physiol. Pharmacol. 2020;31:20190206. doi: 10.1515/jbcpp-2019-0206. PubMed DOI
Adetuyi B.O., Omolabi F.K., Olajide P.A., Oloke J.K. Pharmacological, Biochemical and Therapeutic Potential of Milk Thistle (Silymarin): A Review. World News Nat. Sci. 2021;37:75–91.
Surai P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants. 2015;4:204–247. doi: 10.3390/antiox4010204. PubMed DOI PMC
Haddadi R., Shahidi Z., Eyvari-Brooshghalan S. Silymarin and Neurodegenerative Diseases: Therapeutic Potential and Basic Molecular Mechanisms. Phytomedicine. 2020;79:153320. doi: 10.1016/j.phymed.2020.153320. PubMed DOI
Saller R., Meier R., Brignoli R. The Use of Silymarin in the Treatment of Liver Diseases. Drugs. 2001;61:2035–2063. doi: 10.2165/00003495-200161140-00003. PubMed DOI
Surai P.F., Surai A., Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants. 2024;13:98. doi: 10.3390/antiox13010098. PubMed DOI PMC
Elangwe C.N., Morozkina S.N., Olekhnovich R.O., Polyakova V.O., Krasichkov A., Yablonskiy P.K., Uspenskaya M.V. Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. Int. J. Mol. Sci. 2023;24:4962. doi: 10.3390/ijms24054962. PubMed DOI PMC
Jabeen N., Sohail M., Shah S.A., Mahmood A., Khan S., ur Rehman Kashif M., Khaliq T. Silymarin Nanocrystals-Laden Chondroitin Sulphate-Based Thermoreversible Hydrogels; A Promising Approach for Bioavailability Enhancement. Int. J. Biol. Macromol. 2022;218:456–472. doi: 10.1016/j.ijbiomac.2022.07.114. PubMed DOI
D’souza A.A., Shegokar R. Polyethylene Glycol (PEG): A Versatile Polymer for Pharmaceutical Applications. Expert Opin. Drug Deliv. 2016;13:1257–1275. doi: 10.1080/17425247.2016.1182485. PubMed DOI
Shi L., Zhang J., Zhao M., Tang S., Cheng X., Zhang W., Li W., Liu X., Peng H., Wang Q. Effects of Polyethylene Glycol on the Surface of Nanoparticles for Targeted Drug Delivery. Nanoscale. 2021;13:10748–10764. doi: 10.1039/D1NR02065J. PubMed DOI
Chen B.M., Cheng T.L., Roffler S.R. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano. 2021;15:14022–14048. doi: 10.1021/acsnano.1c05922. PubMed DOI
Luís Â., Ramos A., Domingues F. Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications. Antibiotics. 2020;9:681. doi: 10.3390/antibiotics9100681. PubMed DOI PMC
Sahu M., Reddy V.R.M., Kim B., Patro B., Park C., Kim W.K., Sharma P. Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications. Materials. 2022;15:1708. doi: 10.3390/ma15051708. PubMed DOI PMC
Gurtner G.C., Callaghan M.J., Longaker M.T. Progress and Potential for Regenerative Medicine. Annu. Rev. Med. 2007;58:299–312. doi: 10.1146/annurev.med.58.082405.095329. PubMed DOI
Słota D., Florkiewicz W., Piętak K., Szwed A., Włodarczyk M., Siwińska M., Rudnicka K., Sobczak-Kupiec A. Preparation, Characterization, and Biocompatibility Assessment of Polymer-Ceramic Composites Loaded with Salvia Officinalis Extract. Materials. 2021;14:6000. doi: 10.3390/ma14206000. PubMed DOI PMC
Grigoras A.G. Drug Delivery Systems Using Pullulan, a Biocompatible Polysaccharide Produced by Fungal Fermentation of Starch. Environ. Chem. Lett. 2019;17:1209–1223. doi: 10.1007/s10311-019-00862-4. DOI
Atala A. Regenerative Medicine Strategies. J. Pediatr. Surg. 2012;47:17–28. doi: 10.1016/j.jpedsurg.2011.10.013. PubMed DOI
Singh R.S., Saini G.K. Advances in Industrial Biotechnology. Volume 8 IK International Publishing House Pvt. Ltd.; Delhi, India: 2016. Chapter 15 Pullulan as Th Erapeutic Tool in Biomedical Applications.
Xu M., Liu J., Sun J., Xu X., Hu Y., Liu B. Optical Microscopy and Electron Microscopy for the Morphological Evaluation of Tendons: A Mini Review. Orthop. Surg. 2020;12:366–371. doi: 10.1111/os.12637. PubMed DOI PMC