Replacement of nitro function by free boronic acid in non-steroidal anti-androgens
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39345716
PubMed Central
PMC11428147
DOI
10.1039/d4md00343h
PII: d4md00343h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A new series of potential flutamide-like antiandrogens has been designed and synthesized to treat prostate cancer. This new series results from our research, which has been aimed at discovering new compounds that can be used for androgen deprivation treatment. The antiandrogens were designed and synthesized by varying the acyl part, linker, and substitution of the benzene ring in the 4-nitro-3-trifluoromethylanilide scaffold of non-steroidal androgens. In addition, the characteristic feature of the nitro group was replaced by a boronic acid functionality. Compound 9a was found to be more effective against LAPC-4 than the standard antiandrogens flutamide, hydroxyflutamide, and bicalutamide. Moreover, it exhibited lower toxicity against the non-cancerous cell line HK-2. The initial in silico study did not show evidence of covalent bonding to the androgen receptor, which was confirmed by an NMR binding experiment with arginine methyl ester. The structure-activity relationships discovered in this study could provide directions for further research on non-steroidal antiandrogens.
Zobrazit více v PubMed
Zhang W. Y. Cao G. Y. Wu F. Wang Y. L. Liu Z. Hu H. Xu K. X. Global Burden of Prostate Cancer and Association with Socioeconomic Status, 1990-2019: A Systematic Analysis from the Global Burden of Disease Study. J. Epidemiol. Glob. Health. 2023;13(3):407–421. doi: 10.1007/s44197-023-00103-6. https://dx.doi.org/10.1007/s44197-023-00103-6 PubMed DOI PMC
Desai K. McManus J. M. Sharifi N. Hormonal Therapy for Prostate Cancer. Endocr. Rev. 2021;42(3):354–373. doi: 10.1210/endrev/bnab002. https://dx.doi.org/10.1210/endrev/bnab002 PubMed DOI PMC
Kolvenbag G. Iversen P. Newling D. W. W. Antiandrogen monotherapy: A new form of treatment for patients with prostate cancer. Urology. 2001;58(2A):16–22. doi: 10.1016/S0090-4295(01)01237-7. https://dx.doi.org/10.1016/s0090-4295(01)01237-7 PubMed DOI
Lallous N. Dalal K. Cherkasov A. Rennie P. S. Targeting Alternative Sites on the Androgen Receptor to Treat Castration-Resistant Prostate Cancer. Int. J. Mol. Sci. 2013;14(6):12496–12519. doi: 10.3390/ijms140612496. https://dx.doi.org/10.3390/ijms140612496 PubMed DOI PMC
Ohbuchi M. Miyata M. Nagai D. Shimada M. Yoshinari K. Yamazoe Y. Role of Enzymatic N-Hydroxylation and Reduction in Flutamide Metabolite-Induced Liver Toxicity. Drug Metab. Dispos. 2009;37:97–105. doi: 10.1124/dmd.108.021964. https://dx.doi.org/10.1124/dmd.108.021964 PubMed DOI
Gao W. Q. Kim J. Dalton J. T. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. Pharm. Res. 2006;23(8):1641–1658. doi: 10.1007/s11095-006-9024-3. https://dx.doi.org/10.1007/s11095-006-9024-3 PubMed DOI PMC
Penning T. M. Su A. L. El-Bayoumy K. Nitroreduction: A Critical Metabolic Pathway for Drugs, Environmental Pollutants, and Explosives. Chem. Res. Toxicol. 2022;35(10):1747–1765. doi: 10.1021/acs.chemrestox.2c00175. PubMed DOI PMC
Coe K. J. Jia Y. Ho H. K. Rademacher P. Bammler T. K. Beyer R. P. Farin F. M. Woodke L. Plymate S. R. Fausto N. et al., Comparison of the cytotoxicity of the nitroaromatic drug flutamide to its cyano analogue in the hepatocyte cell line TAMH: Evidence for complex I inhibition and mitochondrial dysfunction using toxicogenomic screening. Chem. Res. Toxicol. 2007;20(9):1277–1290. doi: 10.1021/tx7001349. PubMed DOI PMC
António J. P. M. Russo R. Carvalho C. P. Cal P. Gois P. M. P. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem. Soc. Rev. 2019;48(13):3513–3536. doi: 10.1039/C9CS00184K. https://dx.doi.org/10.1039/c9cs00184k PubMed DOI
Taylor R. C. Cluff C. L. Vibrational frequency associated with the boron-nitrogen dative bond in amine boranes. Nature. 1958;182(4632):390–392. doi: 10.1038/182390a0. https://dx.doi.org/10.1038/182390a0 DOI
Höpfl H. The tetrahedral character of the boron atom newly defined: a useful tool to evaluate the N→B bond. J. Organomet. Chem. 1999;581(1–2):129–149. doi: 10.1016/S0022-328X(99)00053-4. https://dx.doi.org/10.1016/s0022-328x(99)00053-4 DOI
Norrild J. C. Sotofte I. Crystal structures of 2-(N,N-dimethylaminoalkyl)ferroceneboronic acids and their diol derivatives.: The quest for a B-N intramolecular bond in the solid state. J. Chem. Soc., Perkin Trans. 2. 2001;(5):727–732. doi: 10.1039/B102377M. https://dx.doi.org/10.1039/b102377m DOI
Lesnikowski Z. J. Recent developments with boron as a platform for novel drug design. Expert Opin. Drug Discovery. 2016;11(6):569–578. doi: 10.1080/17460441.2016.1174687. https://dx.doi.org/10.1080/17460441.2016.1174687 PubMed DOI
Fernandes G. F. S. Denny W. A. Dos Santos J. L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 2019;179:791–804. doi: 10.1016/j.ejmech.2019.06.092. https://dx.doi.org/10.1016/j.ejmech.2019.06.092 PubMed DOI
Das B. Nandwana N. Das S. Nandwana V. Shareef M. Das Y. Saito M. Weiss L. Almaguel F. Hosmane N. et al., Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective. Molecules. 2022;27(9):2615. doi: 10.3390/molecules27092615. https://dx.doi.org/10.3390/molecules27092615 PubMed DOI PMC
Grams R. Santos W. Scorei I. Abad-García A. Rosenblum C. Bita A. Cerecetto H. Viñas C. Soriano-Ursúa M. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem. Rev. 2024;124:2441–2511. doi: 10.1021/acs.chemrev.3c00663. https://dx.doi.org/10.1021/acs.chemrev.3c00663 PubMed DOI
Trippier P. C. McGuigan C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm. 2010;1(3):183–198. doi: 10.1039/C0MD00119H. https://dx.doi.org/10.1039/c0md00119h DOI
Baker S. J. Ding C. Z. Akama T. Zhang Y. K. Hernandez V. Xia Y. Therapeutic potential of boron-containing compounds. Future Med. Chem. 2009;1(7):1275–1288. doi: 10.4155/fmc.09.71. https://dx.doi.org/10.4155/fmc.09.71 PubMed DOI
Fu H. Fang H. Sun J. Wang H. Liu A. Sun J. Wu Z. Boronic Acid-based Enzyme Inhibitors: A Review of Recent Progress. Curr. Med. Chem. 2014;21(28):3271–3280. doi: 10.2174/0929867321666140601200803. https://dx.doi.org/10.2174/0929867321666140601200803 PubMed DOI
Plescia J. Moitessier N. Design and discovery of boronic acid drugs. Eur. J. Med. Chem. 2020;195:20. doi: 10.1016/j.ejmech.2020.112270. https://dx.doi.org/10.1016/j.ejmech.2020.112270 PubMed DOI
Smoum R. Rubinstein A. Dembitsky V. Srebnik M. Boron Containing Compounds as Protease Inhibitors. Chem. Rev. 2012;112:4156–4220. doi: 10.1021/cr608202m. https://dx.doi.org/10.1021/cr608202m PubMed DOI
Yenugonda V. Kong Y. Deb T. Yang Y. Riggins R. Brown M. Trans-resveratrol boronic acid exhibits enhanced anti-proliferative activity on estrogen-dependent MCF-7 breast cancer cells. Cancer Biol. Ther. 2012;13:925–934. doi: 10.4161/cbt.20845. https://dx.doi.org/10.4161/cbt.20845 PubMed DOI PMC
Silva M. P. Saraiva L. Pinto M. Sousa M. E. Boronic Acids and Their Derivatives in Medicinal Chemistry: Synthesis and Biological Applications. Molecules. 2020;25(18):4323. doi: 10.3390/molecules25184323. https://dx.doi.org/10.3390/molecules25184323 PubMed DOI PMC
Bohl C. E. Miller D. D. Chen J. Y. Bell C. E. Dalton J. T. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J. Biol. Chem. 2005;280(45):37747–37754. doi: 10.1074/jbc.M507464200. https://dx.doi.org/10.1074/jbc.M507464200 PubMed DOI PMC
Juhás M. Zitko J. Molecular Interactions of Pyrazine-Based Compounds to Proteins. J. Med. Chem. 2020;63:8901–8916. doi: 10.1021/acs.jmedchem.9b02021. https://dx.doi.org/10.1021/acs.jmedchem.9b02021 PubMed DOI
Bouz G. Slechta P. Jand'ourek O. Konecna K. Paterova P. Barta P. Novak M. Kucera R. Dal N. J. K. Fenaroli F. et al., Hybridization Approach Toward Novel Antituberculars: Design, Synthesis, and Biological Evaluation of Compounds Combining Pyrazinamide and 4-Aminosalicyl i c Acid. ACS Infect. Dis. 2023;9:79–96. doi: 10.1021/acsinfecdis.2c00433. https://dx.doi.org/10.1021/acsinfecdis.2c00433 PubMed DOI
Slechta P. Needle A. A. Jand'ourek O. Paterova P. Konecna K. Barta P. Kunes J. Kubicek V. Dolezal M. Kucerova-Chlupacova M. Design, Synthesis and Antimicrobial Evaluation of New N-(1-Hydroxy-1,3-dihydrobenzo c 1,2 oxaborol-6-yl)(hetero)aryl-2-carbox amides as Potential Inhibitors of Mycobacterial Leucyl-tRNA Synthetase. Int. J. Mol. Sci. 2023;24(3):2951. doi: 10.3390/ijms24032951. https://dx.doi.org/10.3390/ijms24032951 PubMed DOI PMC
Brooks W. L. A. Deng C. C. Sumerlin B. S. Structure-Reactivity Relationships in Boronic Acid-Diol Complexation. ACS Omega. 2018;3(12):17863–17870. doi: 10.1021/acsomega.8b02999. https://dx.doi.org/10.1021/acsomega.8b02999 PubMed DOI PMC
Graham B. J. Windsor I. W. Gold B. Raines R. T. Boronic acid with high oxidative stability and utility in biological contexts. Proc. Natl. Acad. Sci. U. S. A. 2021;118(10):7. doi: 10.1073/pnas.2013691118. https://dx.doi.org/10.1073/pnas.2013691118 PubMed DOI PMC
Hinkes S. P. A. Klein C. D. P. Virtues of Volatility: A Facile Transesterification Approach to Boronic Acids. Org. Lett. 2019;21(9):3048–3052. doi: 10.1021/acs.orglett.9b00584. https://dx.doi.org/10.1021/acs.orglett.9b00584 PubMed DOI
Brown H. C. Park W. S. Cha J. S. Cho B. T. Brown C. A. Addition-compounds of alkali-metal hydrides. 28. Preparation of potassium dialkoxymonoalkylborohydrides from cyclic boronic esters - a new class of reducing agents. J. Org. Chem. 1986;51(3):337–342. doi: 10.1021/jo00353a012. https://dx.doi.org/10.1021/jo00353a012 DOI
Korich A. L. Iovine P. M. Boroxine chemistry and applications: A perspective. Dalton Trans. 2010;39(6):1423–1431. doi: 10.1039/B917043J. https://dx.doi.org/10.1039/b917043j PubMed DOI
Lawrence K. Flower S. E. Kociok-Kohn G. Frost C. G. James T. D. A simple and effective colorimetric technique for the detection of boronic acids and their derivatives. Anal. Methods. 2012;4(8):2215–2217. doi: 10.1039/C2AY25346A. https://dx.doi.org/10.1039/c2ay25346a DOI
Otsuka H. Uchimura E. Koshino H. Okano T. Kataoka K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 2003;125(12):3493–3502. doi: 10.1021/ja021303r. https://dx.doi.org/10.1021/ja021303r PubMed DOI
Zhu L. Shabbir S. H. Gray M. Lynch V. M. Sorey S. Anslyn E. V. A structural investigation of the N-B interaction in an o-(N,N-dialkylaminomethyl)arylboronate system. J. Am. Chem. Soc. 2006;128(4):1222–1232. doi: 10.1021/ja055817c. https://dx.doi.org/10.1021/ja055817c PubMed DOI
Iannazzo L. Benedetti E. Catala M. Etheve-Quelquejeu M. Tisné C. Micouin L. Monitoring of reversible boronic acid-diol interactions by fluorine NMR spectroscopy in aqueous media. Org. Biomol. Chem. 2015;13(33):8817–8821. doi: 10.1039/C5OB01362C. https://dx.doi.org/10.1039/c5ob01362c PubMed DOI
Hillebrand L. Liang X. Serafim R. Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J. Med. Chem. 2024;67:7668–7758. doi: 10.1021/acs.jmedchem.3c01825. https://dx.doi.org/10.1021/acs.jmedchem.3c01825 PubMed DOI
Sampson N. Neuwirt H. Puhr M. Klocker H. Eder I. E. In vitro model systems to study androgen receptor signaling in prostate cancer. Endocr.-Relat. Cancer. 2013;20(2):R49–R64. doi: 10.1530/erc-12-0401. PubMed DOI
Moll J. M. Teubel W. J. Erkens S. E. Jozefzoon-Agai A. Dits N. F. van Rijswijk A. Jenster G. W. van Weerden W. M. Cell Line Characteristics Predict Subsequent Resistance to Androgen Receptor-Targeted Agents (ARTA) in Preclinical Models of Prostate Cancer. Front. Oncol. 2022;12:11. doi: 10.3389/fonc.2022.877613. PubMed DOI PMC
Marques R. B. van Weerden W. M. Erkens-Schulze S. de Ridder C. M. Bangma C. H. Trapman J. Jenster G. The human PC346 xenograft and cell line panel: A model system for prostate cancer progression. Eur. Urol. 2006;49(2):245–257. doi: 10.1016/j.eururo.2005.12.035. https://dx.doi.org/10.1016/j.eururo.2005.12.035 PubMed DOI
Klein K. A. Reiter R. E. Redula J. Morad H. Zhu X. L. Brothman A. R. Lamb D. J. Marcelli M. Belldegrun A. Witte O. N. et al., Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 1997;3(4):402–408. doi: 10.1038/nm0497-402. https://dx.doi.org/10.1038/nm0497-402 PubMed DOI
Mullane S. A. Van Allen E. M. Precision medicine for advanced prostate cancer. Curr. Opin. Urol. 2016;26(3):231–239. doi: 10.1097/MOU.0000000000000278. https://dx.doi.org/10.1097/mou.0000000000000278 PubMed DOI PMC
Wang G. J. Lai T. C. Chen C. P. Inhibitory effects of L-arginine derivatives on endothelium-dependent vasorelaxing response to acetylcholine of the rat aorta. Eur. J. Med. Chem. 2004;39(7):611–617. doi: 10.1016/j.ejmech.2004.02.012. https://dx.doi.org/10.1016/j.ejmech.2004.02.012 PubMed DOI