Human DUS1L catalyzes dihydrouridine modification at tRNA positions 16/17, and DUS1L overexpression perturbs translation

. 2024 Oct 02 ; 7 (1) : 1238. [epub] 20241002

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39354220

Grantová podpora
JPMJFR204Z MEXT | Japan Science and Technology Agency (JST)
20H03187 MEXT | Japan Society for the Promotion of Science (JSPS)
21H02731 MEXT | Japan Society for the Promotion of Science (JSPS)

Odkazy

PubMed 39354220
PubMed Central PMC11445529
DOI 10.1038/s42003-024-06942-8
PII: 10.1038/s42003-024-06942-8
Knihovny.cz E-zdroje

Human cytoplasmic tRNAs contain dihydrouridine modifications at positions 16 and 17 (D16/D17). The enzyme responsible for D16/D17 formation and its cellular roles remain elusive. Here, we identify DUS1L as the human tRNA D16/D17 writer. DUS1L knockout in the glioblastoma cell lines LNZ308 and U87 causes loss of D16/D17. D formation is reconstituted in vitro using recombinant DUS1L in the presence of NADPH or NADH. DUS1L knockout/overexpression in LNZ308 cells shows that DUS1L supports cell growth. Moreover, higher DUS1L expression in glioma patients is associated with poorer prognosis. Upon vector-mediated DUS1L overexpression in LNZ308 cells, 5' and 3' processing of precursor tRNATyr(GUA) is inhibited, resulting in a reduced mature tRNATyr(GUA) level, reduced translation of the tyrosine codons UAC and UAU, and reduced translational readthrough of the near-cognate stop codons UAA and UAG. Moreover, DUS1L overexpression increases the amounts of several D16/D17-containing tRNAs and total cellular translation. Our study identifies a human dihydrouridine writer, providing the foundation to study its roles in health and disease.

Zobrazit více v PubMed

Crick, F. On protein synthesis. Symp. Soc. Exp. Biol.12, 138–163 (1958). PubMed

Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I. & Zamecnik, P. C. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem.231, 241–257 (1958). PubMed

Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol.22, 375–392 (2021). PubMed

Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res.50, D231–D235 (2022). PubMed PMC

Chujo, T. & Tomizawa, K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J.288, 7096–7122 (2021). PubMed PMC

De Crecy-Lagard, V. et al. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res.47, 2143–2159 (2019). PubMed PMC

Wang, Y. et al. tRNA modifications: insights into their role in human cancers. Trends Cell Biol.33, 1035–1048 (2023). PubMed

Cappannini, A. et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res.52, D239–D244 (2024). PubMed PMC

Dalluge, J. J., Hashizume, T., Sopchik, A. E. & McCloskey, J. A. Conformational flexibility in RNA: the role of dihydouridine. Nucleic Acids Res.24, 1073–1079 (1996). PubMed PMC

Sundaralingam, M., Rao, S. T. & Abola, J. Molecular conformation of dihydrouridine: puckered base nucleoside of transfer RNA. Science172, 725–727 (1971). PubMed

Westhof, E. & Sundaralingam, M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry25, 4868–4878 (1986). PubMed

Dalluge, J. J. et al. Posttranscriptional modification of tRNA in psychrophilic bacteria. J. Bacteriol.179, 1918–1923 (1997). PubMed PMC

Edmonds, C. G. et al. Posttranscriptional modification of tRNA in thermophilic archea (archaebacteria). J. Bacteriol.173, 3138–3148 (1991). PubMed PMC

Bishop, A. C., Xu, J., Johnson, R. C., Schimmel, P. & de Crecy-Lagard, V. Identification of the tRNA-dihydrouridine synthase family. J. Biol. Chem.277, 25090–25095 (2002). PubMed

Xing, F., Hiley, S. L., Hughes, T. R. & Phizicky, E. M. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J. Biol. Chem.279, 17850–17860 (2004). PubMed

Xing, F., Martzen, M. R. & Phizicky, E. M. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA8, 370–381 (2002). PubMed PMC

Bou-Nader, C. et al. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario. Nucleic Acids Res.46, 1386–1394 (2018). PubMed PMC

Kusuba, H. et al. In vitro dihydrouridine formation by tRNA dihydrouridine synthase from Thermus thermophilus, an extreme-thermophilic eubacterium. J. Biochem.158, 513–521 (2015). PubMed

Savage, D. F., de Crecy-Lagard, V. & Bishop, A. C. Molecular determinants of dihydrouridine synthase activity. FEBS Lett.580, 5198–5202 (2006). PubMed

Byrne, R. T. et al. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proc. Natl. Acad. Sci. USA112, 6033–6037 (2015). PubMed PMC

Park, F. et al. The 1.59 A resolution crystal structure of TM0096, a flavin mononucleotide binding protein from Thermotoga maritima. Proteins55, 772–774 (2004). PubMed

Rider, L. W., Ottosen, M. B., Gattis, S. G. & Palfey, B. A. Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction. J. Biol. Chem.284, 10324–10333 (2009). PubMed PMC

Bou-Nader, C., Bregeon, D., Pecqueur, L., Fontecave, M. & Hamdane, D. Electrostatic potential in the tRNA binding evolution of dihydrouridine synthases. Biochemistry57, 5407–5414 (2018). PubMed

Bou-Nader, C. et al. An extended dsRBD is required for post-transcriptional modification in human tRNAs. Nucleic Acids Res. 43, 9446–9456 (2015). PubMed PMC

Lombard, M. et al. Evolutionary diversity of Dus2 enzymes reveals novel structural and functional features among members of the RNA dihydrouridine synthases family. Biomolecules12, 10.3390/biom12121760 (2022). PubMed PMC

Yu, F. et al. Molecular basis of dihydrouridine formation on tRNA. Proc. Natl. Acad. Sci. USA108, 19593–19598 (2011). PubMed PMC

Kato, T. et al. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res.65, 5638–5646 (2005). PubMed

Dai, W. et al. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat. Chem. Biol.17, 1178–1187 (2021). PubMed PMC

Finet, O. et al. Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation. Mol. Cell82, 404–419 e409 (2022). PubMed PMC

Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol.20, 406–420 (2019). PubMed PMC

Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science357, 10.1126/science.aan2507 (2017). PubMed

Beznoskova, P., Bidou, L., Namy, O. & Valasek, L. S. Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines. Nucleic Acids Res.49, 5202–5215 (2021). PubMed PMC

Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell175, 1872–1886 e1824 (2018). PubMed PMC

Ontiveros, R. J. et al. Coordination of mRNA and tRNA methylations by TRMT10A. Proc. Natl. Acad. Sci. USA117, 7782–7791 (2020). PubMed PMC

Sun, Y. et al. m(1)A in CAG repeat RNA binds to TDP-43 and induces neurodegeneration. Nature623, 580–587 (2023). PubMed PMC

Draycott, A. S. et al. Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA. PLoS Biol.20, e3001622 (2022). PubMed PMC

Shaukat, A. N., Kaliatsi, E. G., Skeparnias, I. & Stathopoulos, C. The dynamic network of RNP RNase P Subunits. Int. J. Mol. Sci.22, 10.3390/ijms221910307 (2021). PubMed PMC

Wu, J. et al. Cryo-EM structure of the human Ribonuclease P holoenzyme. Cell175, 1393–1404 e1311 (2018). PubMed

Hayne, C. K. et al. New insights into RNA processing by the eukaryotic tRNA splicing endonuclease. J. Biol. Chem.299, 105138 (2023). PubMed PMC

Zhang, X. et al. Structural basis of pre-tRNA intron removal by human tRNA splicing endonuclease. Mol. Cell83, 1328–1339 e1324 (2023). PubMed

Lipowsky, G. et al. Coordination of tRNA nuclear export with processing of tRNA. RNA5, 539–549 (1999). PubMed PMC

Wellner, K., Betat, H. & Morl, M. A tRNA’s fate is decided at its 3′ end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. Biochim Biophys. Acta Gene Regul. Mech.1861, 433–441 (2018). PubMed

Dewe, J. M., Whipple, J. M., Chernyakov, I., Jaramillo, L. N. & Phizicky, E. M. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA18, 1886–1896 (2012). PubMed PMC

Kaneko, S. et al. Mettl1-dependent m7G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster. Nat. Commun. 15, 8147 (2024). PubMed PMC

Chujo, T. & Suzuki, T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA18, 2269–2276 (2012). PubMed PMC

Chujo, T. et al. Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J.36, 1447–1462 (2017). PubMed PMC

Fukuda, H. et al. Cooperative methylation of human tRNA3Lys at positions A58 and U54 drives the early and late steps of HIV-1 replication. Nucleic Acids Res.49, 11855–11867 (2021). PubMed PMC

Yakita, M. et al. Extracellular N6-isopentenyladenosine (i6A) addition induces cotranscriptional i6A incorporation into ribosomal RNAs. RNA28, 1013–1027 (2022). PubMed PMC

Shalem, S. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science343, 84–87 (2014). PubMed PMC

Takesue, Y. et al. Regulation of growth hormone biosynthesis by Cdk5 regulatory subunit associated protein 1-like 1 (CDKAL1) in pituitary adenomas. Endocr. J.66, 807–816 (2019). PubMed

Hirayama, M. et al. FTO demethylates cyclin D1 mRNA and controls cell-cycle progression. Cell Rep.31, 107464 (2020). PubMed

Shi, S. L. et al. Export of RNA-derived modified nucleosides by equilibrative nucleoside transporters defines the magnitude of autophagy response and Zika virus replication. RNA Biol.18, 478–495 (2021). PubMed PMC

Nagayoshi, Y. et al. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Sci. Adv.7, 10.1126/sciadv.abf3072 (2021). PubMed PMC

Nagayoshi, Y. et al. t(6)A and ms(2)t(6)A modified nucleosides in serum and urine as strong candidate biomarkers of COVID-19 infection and severity. Biomolecules12, 10.3390/biom12091233 (2022). PubMed PMC

Ohira, T. et al. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature605, 372–379 (2022). PubMed PMC

Murakami, Y. et al. NSUN3-mediated mitochondrial tRNA 5-formylcytidine modification is essential for embryonic development and respiratory complexes in mice. Commun. Biol.6, 307 (2023). PubMed PMC

Tresky, R. et al. TRMT10A dysfunction perturbs codon translation of initiator methionine and glutamine and impairs brain functions in mice. Nucleic Acids Res.10.1093/nar/gkae520 (2024). PubMed PMC

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods9, 671–675 (2012). PubMed PMC

Clark, W. C., Evans, M. E., Dominissini, D., Zheng, G. & Pan, T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA22, 1771–1784 (2016). PubMed PMC

Zhao, X. et al. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell186, 5517–5535 (2023). PubMed

Steinberg, S., Misch, A. & Sprinzl, M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res.21, 3011–3015 (1993). PubMed PMC

Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.7, 539 (2011). PubMed PMC

Turowski, T. W. & Tollervey, D. Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc. Trans.44, 1367–1375 (2016). PubMed PMC

Jarrous, N., Mani, D. & Ramanathan, A. Coordination of transcription and processing of tRNA. FEBS J.289, 3630–3641 (2022). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...