Human DUS1L catalyzes dihydrouridine modification at tRNA positions 16/17, and DUS1L overexpression perturbs translation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
JPMJFR204Z
MEXT | Japan Science and Technology Agency (JST)
20H03187
MEXT | Japan Society for the Promotion of Science (JSPS)
21H02731
MEXT | Japan Society for the Promotion of Science (JSPS)
PubMed
39354220
PubMed Central
PMC11445529
DOI
10.1038/s42003-024-06942-8
PII: 10.1038/s42003-024-06942-8
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proteosyntéza * MeSH
- RNA transferová * metabolismus genetika MeSH
- uridin metabolismus analogy a deriváty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA transferová * MeSH
- uridin MeSH
Human cytoplasmic tRNAs contain dihydrouridine modifications at positions 16 and 17 (D16/D17). The enzyme responsible for D16/D17 formation and its cellular roles remain elusive. Here, we identify DUS1L as the human tRNA D16/D17 writer. DUS1L knockout in the glioblastoma cell lines LNZ308 and U87 causes loss of D16/D17. D formation is reconstituted in vitro using recombinant DUS1L in the presence of NADPH or NADH. DUS1L knockout/overexpression in LNZ308 cells shows that DUS1L supports cell growth. Moreover, higher DUS1L expression in glioma patients is associated with poorer prognosis. Upon vector-mediated DUS1L overexpression in LNZ308 cells, 5' and 3' processing of precursor tRNATyr(GUA) is inhibited, resulting in a reduced mature tRNATyr(GUA) level, reduced translation of the tyrosine codons UAC and UAU, and reduced translational readthrough of the near-cognate stop codons UAA and UAG. Moreover, DUS1L overexpression increases the amounts of several D16/D17-containing tRNAs and total cellular translation. Our study identifies a human dihydrouridine writer, providing the foundation to study its roles in health and disease.
Department of Cell Pathology Faculty of Life Sciences Kumamoto University Kumamoto Japan
Department of Molecular Physiology Faculty of Life Sciences Kumamoto University Kumamoto Japan
Department of Neurosurgery Faculty of Life Sciences Kumamoto University Kumamoto Japan
Zobrazit více v PubMed
Crick, F. On protein synthesis. Symp. Soc. Exp. Biol.12, 138–163 (1958). PubMed
Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I. & Zamecnik, P. C. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem.231, 241–257 (1958). PubMed
Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol.22, 375–392 (2021). PubMed
Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res.50, D231–D235 (2022). PubMed PMC
Chujo, T. & Tomizawa, K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J.288, 7096–7122 (2021). PubMed PMC
De Crecy-Lagard, V. et al. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res.47, 2143–2159 (2019). PubMed PMC
Wang, Y. et al. tRNA modifications: insights into their role in human cancers. Trends Cell Biol.33, 1035–1048 (2023). PubMed
Cappannini, A. et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res.52, D239–D244 (2024). PubMed PMC
Dalluge, J. J., Hashizume, T., Sopchik, A. E. & McCloskey, J. A. Conformational flexibility in RNA: the role of dihydouridine. Nucleic Acids Res.24, 1073–1079 (1996). PubMed PMC
Sundaralingam, M., Rao, S. T. & Abola, J. Molecular conformation of dihydrouridine: puckered base nucleoside of transfer RNA. Science172, 725–727 (1971). PubMed
Westhof, E. & Sundaralingam, M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry25, 4868–4878 (1986). PubMed
Dalluge, J. J. et al. Posttranscriptional modification of tRNA in psychrophilic bacteria. J. Bacteriol.179, 1918–1923 (1997). PubMed PMC
Edmonds, C. G. et al. Posttranscriptional modification of tRNA in thermophilic archea (archaebacteria). J. Bacteriol.173, 3138–3148 (1991). PubMed PMC
Bishop, A. C., Xu, J., Johnson, R. C., Schimmel, P. & de Crecy-Lagard, V. Identification of the tRNA-dihydrouridine synthase family. J. Biol. Chem.277, 25090–25095 (2002). PubMed
Xing, F., Hiley, S. L., Hughes, T. R. & Phizicky, E. M. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J. Biol. Chem.279, 17850–17860 (2004). PubMed
Xing, F., Martzen, M. R. & Phizicky, E. M. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA8, 370–381 (2002). PubMed PMC
Bou-Nader, C. et al. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario. Nucleic Acids Res.46, 1386–1394 (2018). PubMed PMC
Kusuba, H. et al. In vitro dihydrouridine formation by tRNA dihydrouridine synthase from Thermus thermophilus, an extreme-thermophilic eubacterium. J. Biochem.158, 513–521 (2015). PubMed
Savage, D. F., de Crecy-Lagard, V. & Bishop, A. C. Molecular determinants of dihydrouridine synthase activity. FEBS Lett.580, 5198–5202 (2006). PubMed
Byrne, R. T. et al. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proc. Natl. Acad. Sci. USA112, 6033–6037 (2015). PubMed PMC
Park, F. et al. The 1.59 A resolution crystal structure of TM0096, a flavin mononucleotide binding protein from Thermotoga maritima. Proteins55, 772–774 (2004). PubMed
Rider, L. W., Ottosen, M. B., Gattis, S. G. & Palfey, B. A. Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction. J. Biol. Chem.284, 10324–10333 (2009). PubMed PMC
Bou-Nader, C., Bregeon, D., Pecqueur, L., Fontecave, M. & Hamdane, D. Electrostatic potential in the tRNA binding evolution of dihydrouridine synthases. Biochemistry57, 5407–5414 (2018). PubMed
Bou-Nader, C. et al. An extended dsRBD is required for post-transcriptional modification in human tRNAs. Nucleic Acids Res. 43, 9446–9456 (2015). PubMed PMC
Lombard, M. et al. Evolutionary diversity of Dus2 enzymes reveals novel structural and functional features among members of the RNA dihydrouridine synthases family. Biomolecules12, 10.3390/biom12121760 (2022). PubMed PMC
Yu, F. et al. Molecular basis of dihydrouridine formation on tRNA. Proc. Natl. Acad. Sci. USA108, 19593–19598 (2011). PubMed PMC
Kato, T. et al. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res.65, 5638–5646 (2005). PubMed
Dai, W. et al. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat. Chem. Biol.17, 1178–1187 (2021). PubMed PMC
Finet, O. et al. Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation. Mol. Cell82, 404–419 e409 (2022). PubMed PMC
Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol.20, 406–420 (2019). PubMed PMC
Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science357, 10.1126/science.aan2507 (2017). PubMed
Beznoskova, P., Bidou, L., Namy, O. & Valasek, L. S. Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines. Nucleic Acids Res.49, 5202–5215 (2021). PubMed PMC
Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell175, 1872–1886 e1824 (2018). PubMed PMC
Ontiveros, R. J. et al. Coordination of mRNA and tRNA methylations by TRMT10A. Proc. Natl. Acad. Sci. USA117, 7782–7791 (2020). PubMed PMC
Sun, Y. et al. m(1)A in CAG repeat RNA binds to TDP-43 and induces neurodegeneration. Nature623, 580–587 (2023). PubMed PMC
Draycott, A. S. et al. Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA. PLoS Biol.20, e3001622 (2022). PubMed PMC
Shaukat, A. N., Kaliatsi, E. G., Skeparnias, I. & Stathopoulos, C. The dynamic network of RNP RNase P Subunits. Int. J. Mol. Sci.22, 10.3390/ijms221910307 (2021). PubMed PMC
Wu, J. et al. Cryo-EM structure of the human Ribonuclease P holoenzyme. Cell175, 1393–1404 e1311 (2018). PubMed
Hayne, C. K. et al. New insights into RNA processing by the eukaryotic tRNA splicing endonuclease. J. Biol. Chem.299, 105138 (2023). PubMed PMC
Zhang, X. et al. Structural basis of pre-tRNA intron removal by human tRNA splicing endonuclease. Mol. Cell83, 1328–1339 e1324 (2023). PubMed
Lipowsky, G. et al. Coordination of tRNA nuclear export with processing of tRNA. RNA5, 539–549 (1999). PubMed PMC
Wellner, K., Betat, H. & Morl, M. A tRNA’s fate is decided at its 3′ end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. Biochim Biophys. Acta Gene Regul. Mech.1861, 433–441 (2018). PubMed
Dewe, J. M., Whipple, J. M., Chernyakov, I., Jaramillo, L. N. & Phizicky, E. M. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA18, 1886–1896 (2012). PubMed PMC
Kaneko, S. et al. Mettl1-dependent m7G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster. Nat. Commun. 15, 8147 (2024). PubMed PMC
Chujo, T. & Suzuki, T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA18, 2269–2276 (2012). PubMed PMC
Chujo, T. et al. Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J.36, 1447–1462 (2017). PubMed PMC
Fukuda, H. et al. Cooperative methylation of human tRNA3Lys at positions A58 and U54 drives the early and late steps of HIV-1 replication. Nucleic Acids Res.49, 11855–11867 (2021). PubMed PMC
Yakita, M. et al. Extracellular N6-isopentenyladenosine (i6A) addition induces cotranscriptional i6A incorporation into ribosomal RNAs. RNA28, 1013–1027 (2022). PubMed PMC
Shalem, S. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science343, 84–87 (2014). PubMed PMC
Takesue, Y. et al. Regulation of growth hormone biosynthesis by Cdk5 regulatory subunit associated protein 1-like 1 (CDKAL1) in pituitary adenomas. Endocr. J.66, 807–816 (2019). PubMed
Hirayama, M. et al. FTO demethylates cyclin D1 mRNA and controls cell-cycle progression. Cell Rep.31, 107464 (2020). PubMed
Shi, S. L. et al. Export of RNA-derived modified nucleosides by equilibrative nucleoside transporters defines the magnitude of autophagy response and Zika virus replication. RNA Biol.18, 478–495 (2021). PubMed PMC
Nagayoshi, Y. et al. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Sci. Adv.7, 10.1126/sciadv.abf3072 (2021). PubMed PMC
Nagayoshi, Y. et al. t(6)A and ms(2)t(6)A modified nucleosides in serum and urine as strong candidate biomarkers of COVID-19 infection and severity. Biomolecules12, 10.3390/biom12091233 (2022). PubMed PMC
Ohira, T. et al. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature605, 372–379 (2022). PubMed PMC
Murakami, Y. et al. NSUN3-mediated mitochondrial tRNA 5-formylcytidine modification is essential for embryonic development and respiratory complexes in mice. Commun. Biol.6, 307 (2023). PubMed PMC
Tresky, R. et al. TRMT10A dysfunction perturbs codon translation of initiator methionine and glutamine and impairs brain functions in mice. Nucleic Acids Res.10.1093/nar/gkae520 (2024). PubMed PMC
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods9, 671–675 (2012). PubMed PMC
Clark, W. C., Evans, M. E., Dominissini, D., Zheng, G. & Pan, T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA22, 1771–1784 (2016). PubMed PMC
Zhao, X. et al. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell186, 5517–5535 (2023). PubMed
Steinberg, S., Misch, A. & Sprinzl, M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res.21, 3011–3015 (1993). PubMed PMC
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.7, 539 (2011). PubMed PMC
Turowski, T. W. & Tollervey, D. Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc. Trans.44, 1367–1375 (2016). PubMed PMC
Jarrous, N., Mani, D. & Ramanathan, A. Coordination of transcription and processing of tRNA. FEBS J.289, 3630–3641 (2022). PubMed