Improving working memory by electrical stimulation and cross-frequency coupling

. 2024 Oct 01 ; 17 (1) : 72. [epub] 20241001

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39354549
Odkazy

PubMed 39354549
PubMed Central PMC11446076
DOI 10.1186/s13041-024-01142-1
PII: 10.1186/s13041-024-01142-1
Knihovny.cz E-zdroje

Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.

Zobrazit více v PubMed

Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39. 10.1038/nrn1201. PubMed

Logie RH. The functional organization and capacity limits of working memory. Curr Dir Psychol Sci. 2011;20:240–5. 10.1177/0963721411415340.

Baddeley A. The fractionation of working memory. Proc Natl Acad Sci USA. 1996;93:13468. 10.1073/PNAS.93.24.13468. PubMed PMC

Bruyer R, Scailquin JC. The visuospatial sketchpad for mental images: testing the multicomponent model of working memory. Acta Psychol. 1998;98:17–36. 10.1016/S0001-6918(97)00053-X. PubMed

Sims VK, Hegarty M. Mental animation in the visuospatial sketchpad: evidence from dual-task studies. Mem Cognit. 1997;25:32–332. PubMed

Zhenzhu Y, Zhang M, Zhou X. Chinese science bulletin updating verbal and visuospatial working memory: are the processes parallel? Chin Sci Bull. 2008;53:2175–85. 10.1007/s11434-008-0299-0.

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100. 10.1006/COGP.1999.0734. PubMed

Stegmayer K, Usher J, Trost S, Henseler I, Tost H, Rietschel M, et al. Disturbed cortico–amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci. 2015;265:303–11. 10.1007/s00406-014-0517-5. PubMed

Maehler C, Schuchardt K. Working memory in children with specific learning disorders and/or attention deficits. Learn Individ Differ. 2016;49:341–7. 10.1016/j.lindif.2016.05.007.

Grot S, Légaré VP, Lipp O, Soulières I, Dolcos F, Luck D. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia. Schizophr Res. 2017;188:68–74. 10.1016/j.schres.2017.01.021. PubMed

Cowan N. What are the differences between long-term, short-term, and working memory? Prog Brain Res. 2008;169:323. 10.1016/S0079-6123(07)00020-9. PubMed PMC

Cowan N. Working memory underpins cognitive development, learning, and education. Educ Psychol Rev. 2014;26:197–223. 10.1007/s10648-013-9246-y. PubMed PMC

Ando M, Kukihara H, Ide N. Executive function measured by Stroop test and mood for elderly people in a facility for the elderly. Clin Case Rep Rev. 2017. 10.15761/CCRR.1000305.

Gläscher J, Adolphs R, Tranel D. Model-based lesion mapping of cognitive control using the Wisconsin card sorting test. Nat Commun. 2019;10(1):1–12. 10.1038/s41467-018-07912-5. PubMed PMC

Parr WV, White MJ. Delayed matching-to-sample performance as a measure of human visuospatial working memory. Bull Psychon Soc. 2013;30(5):369–72. 10.3758/BF03334092.

Foster JL, Shipstead Z, Harrison TL, Hicks KL, Redick TS, Engle RW. Shortened complex span tasks can reliably measure working memory capacity. Mem Cogn. 2014;43(2):226–36. 10.3758/S13421-014-0461-7. PubMed

Jensen O, Spaak E, Zumer JM. Human brain oscillations: from physiological mechanisms to analysis and cognition. In: Supek S, Aine CJ, editors. Magnetoencephalography: from signals to dynamic cortical networks, vol. 9783642330. Berlin Heidelberg: Springer-Verlag; 2014. p. 359–403.

Cebolla AM, Cheron G. Understanding neural oscillations in the human brain: from movement to consciousness and vice versa. Front Psychol. 2019;10:1930. 10.3389/fpsyg.2019.01930. PubMed PMC

Jensen O, Spaak E, Zumer JM. Human brain oscillations: from physiological mechanisms to analysis and cognition. In: Supek S, Aine CJ, editors. Magnetoencephalography. Berlin: Springer International Publishing; 2019. p. 1–46. 10.1007/978-3-319-62657-4_17-1.

Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci. 2014;18:16–25. 10.1016/j.tics.2013.10.010. PubMed

Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11:267–9. 10.1016/j.tics.2007.05.003. PubMed

Bahramisharif A, Jensen O, Jacobs J, Lisman J. Serial representation of items during working memory maintenance at letter-selective cortical sites. PLOS Biol. 2018;16: e2003805. 10.1371/JOURNAL.PBIO.2003805. PubMed PMC

Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci USA. 2010;107:3228–33. 10.1073/pnas.0911531107. PubMed PMC

Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013. 10.1016/j.neuron.2013.03.007. PubMed PMC

Lisman JE, Idiart MAP. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–5. 10.1126/science.7878473. PubMed

Jensen O, Lisman JE. Novel lists of 7±2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn Mem. 1996;3:257–63. PubMed

Herman PA, Lundqvist M, Lansner A. Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 2013;1536:68–87. 10.1016/j.brainres.2013.08.002. PubMed

Van Vugt MK, Chakravarthi R, Lachaux J-P. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front Hum Neurosci. 2014;8:696. 10.3389/fnhum.2014.00696. PubMed PMC

Adrian ED, Matthews BHC. The interpretation of potential waves in the cortex. J Physiol. 1934;81:440–71. 10.1113/jphysiol.1934.sp003147. PubMed PMC

Whittingstall K, Logothetis NK. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron. 2009;64:281–9. 10.1016/j.neuron.2009.08.016. PubMed

Sahlem GL, Badran BW, Halford JJ, Williams NR, Korte JE, Leslie K, et al. Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study. Brain Stimul. 2015;8:528–34. 10.1016/j.brs.2015.01.414. PubMed PMC

Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3. 10.1038/nature05278. PubMed

Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23:843–9. 10.1038/mp.2017.59. PubMed PMC

Lee H, Fell J, Axmacher N. Electrical engram: how deep brain stimulation affects memory. Trends Cogn Sci. 2013;17:574–84. 10.1016/j.tics.2013.09.002. PubMed

Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–93. 10.1038/NCPNEURO0530. PubMed

Filmer HL, Dux PE, Mattingley JB. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 2014;37:742–53. 10.1016/J.TINS.2014.08.003. PubMed

Monti A, Ferrucci R, Fumagalli M, Mameli F, Cogiamanian F, Ardolino G, et al. Transcranial direct current stimulation (tDCS) and language. J Neurol Neurosurg Psychiatry. 2013;84:832–42. 10.1136/JNNP-2012-302825. PubMed PMC

Krause MR, Vieira PG, Pack CC. Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity? PLOS Biol. 2023;21: e3001973. 10.1371/JOURNAL.PBIO.3001973. PubMed PMC

Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul Basic, Transl Clin Res Neuromodul. 2008;1:206–23. 10.1016/J.BRS.2008.06.004. PubMed

Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018. 10.1038/s41593-017-0054-4. PubMed

Antal A, Nitsche MA, Paulus W. Transcranial direct current stimulation and the visual cortex. Brain Res Bull. 2006;68:459–63. 10.1016/J.BRAINRESBULL.2005.10.006. PubMed

Been G, Ngo TT, Miller SM, Fitzgerald PB. The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Res Rev. 2007;56:346–61. 10.1016/J.BRAINRESREV.2007.08.001. PubMed

Başar E, Başar-Eroglu C, Karakaş S, Schürmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39:241–8. 10.1016/S0167-8760(00)00145-8. PubMed

Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80:751–64. 10.1016/J.NEURON.2013.10.002/ATTACHMENT/C0391771-2049-448E-B7FF-A031D0FE94B5/MMC1.PDF. PubMed PMC

Vieira PG, Krause MR, Pack CC. tACS entrains neural activity while somatosensory input is blocked. PLOS Biol. 2020;18: e3000834. 10.1371/JOURNAL.PBIO.3000834. PubMed PMC

Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci U S A. 2019;116:5747–55. 10.1073/PNAS.1815958116/SUPPL_FILE/PNAS.1815958116.SAPP.PDF. PubMed PMC

Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:54850. 10.3389/FNHUM.2013.00317/BIBTEX. PubMed PMC

Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (a-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8:499–508. 10.1016/j.brs.2014.12.004. PubMed PMC

Başar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci. 2013;15:291–300. 10.31887/dcns.2013.15.3/ebasar. PubMed PMC

Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115:1490–505. 10.1016/j.clinph.2004.01.001. PubMed

Mably AJ, Colgin LL. Gamma oscillations in cognitive disorders. Curr Opin Neurobiol. 2018;52:182–7. 10.1016/J.CONB.2018.07.009. PubMed PMC

Abend R, Jalon I, Gurevitch G, Sar-El R, Shechner T, Pine DS, et al. Modulation of fear extinction processes using transcranial electrical stimulation. Transl Psychiatry. 2016;6(10):e913–e913. 10.1038/tp.2016.197. PubMed PMC

Supriya S, Siuly S, Wang H, Zhang Y. Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf Sci Syst. 2020;8:33. 10.1007/S13755-020-00129-1. PubMed PMC

Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16: e2005348. 10.1371/journal.pbio.2005348. PubMed PMC

Jones KT, Arciniega H, Berryhill ME. Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Res. 2019;1720:146324. 10.1016/J.BRAINRES.2019.146324. PubMed

Sahu PP, Tseng P. Frontoparietal theta tACS nonselectively enhances encoding, maintenance, and retrieval stages in visuospatial working memory. Neurosci Res. 2021;172:41–50. 10.1016/J.NEURES.2021.05.005. PubMed

Gonzalez-Perez M, Wakui E, Thoma V, Nitsche MA, Rivolta D. Transcranial alternating current stimulation (tACS) at 40 Hz enhances face and object perception. Neuropsychologia. 2019;135:107237. 10.1016/J.NEUROPSYCHOLOGIA.2019.107237. PubMed

Kleinert ML, Szymanski C, Müller V. Frequency-unspecific effects of θ-tACS related to a visuospatial working memory task. Front Hum Neurosci. 2017;11:367. 10.3389/fnhum.2017.00367. PubMed PMC

Yang D, Ghafoor U, Eggebrecht AT, Hong KS. Effectiveness assessment of repetitive transcranial alternating current stimulation with concurrent EEG and fNIRS measurement. Heal Inf Sci Syst. 2023;11:1–13. 10.1007/S13755-023-00233-Y/METRICS. PubMed PMC

Guo X, Li Z, Zhang L, Liu Q. Modulation of visual working memory performance via different theta frequency stimulations. Brain Sci. 2021;11:1358. 10.3390/BRAINSCI11101358. PubMed PMC

Zeng L, Guo M, Wu R, Luo Y, Wei P. The effects of electroencephalogram feature-based transcranial alternating current stimulation on working memory and electrophysiology. Front Aging Neurosci. 2022;14:828377. 10.3389/FNAGI.2022.828377. PubMed PMC

Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22:1314–8. 10.1016/j.cub.2012.05.021. PubMed

Tseng P, Chang YT, Chang CF, Liang WK, Juan CH. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci Rep. 2016;6:1–15. 10.1038/srep32138. PubMed PMC

Pahor A, Jaušovec N. The effects of theta and gamma tACS on working memory and electrophysiology. Front Hum Neurosci. 2018;11:651. 10.3389/fnhum.2017.00651. PubMed PMC

Alekseichuk I, Pabel SC, Antal A, Paulus W. Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci. 2017;35:147–58. 10.3233/RNN-160714. PubMed

Tseng P, Iu KC, Juan CH. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci Rep. 2018;8:1–9. 10.1038/s41598-017-18449-w. PubMed PMC

Feurra M, Galli G, Pavone EF, Rossi A, Rossi S. Frequency-specific insight into short-term memory capacity. J Neurophysiol. 2016;116:153–8. 10.1152/jn.01080.2015. PubMed PMC

Borghini G, Candini M, Filannino C, Hussain M, Walsh V, Romei V, et al. Alpha oscillations are causally linked to inhibitory abilities in ageing. J Neurosci. 2018;38:4418–29. 10.1523/JNEUROSCI.1285-17.2018. PubMed PMC

Thompson L, Khuc J, Saccani MS, Zokaei N, Cappelletti M. Gamma oscillations modulate working memory recall precision. Exp Brain Res. 2021;239:2711–24. 10.1007/S00221-021-06051-6. PubMed PMC

Biel AL, Sterner E, Röll L, Sauseng P. Modulating verbal working memory with fronto-parietal transcranial electric stimulation at theta frequency: does it work? Eur J Neurosci. 2022;55:405–25. 10.1111/EJN.15563. PubMed

Hu Z, Samuel IBH, Meyyappan S, Bo K, Rana C, Ding M. Aftereffects of frontoparietal theta tACS on verbal working memory: behavioral and neurophysiological analysis. IBRO Neurosci Rep. 2022;13:469–77. 10.1016/J.IBNEUR.2022.10.013. PubMed PMC

Violante IR, Li LM, Carmichael DW, Lorenz R, Leech R, Hampshire A, et al. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife. 2017. 10.7554/eLife.22001. PubMed PMC

Draaisma LR, Wessel MJ, Moyne M, Morishita T, Hummel FC. Targeting the frontoparietal network using bifocal transcranial alternating current stimulation during a motor sequence learning task in healthy older adults. Brain Stimul. 2022;15:968–79. 10.1016/j.brs.2022.06.012. PubMed

Rauh J, Müller ASM, Nolte G, Haaf M, Mußmann M, Steinmann S, et al. Comparison of transcranial brain stimulation approaches: prefrontal theta alternating current stimulation enhances working memory performance. Front Psychiatry. 2023. 10.3389/FPSYT.2023.1140361. PubMed PMC

Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019;22(5):820–7. 10.1038/s41593-019-0371-x. PubMed PMC

Hu Z, Woods AJ, Samuel IBH, Meyyappan S, Ding M. Proceedings #22: frontoparietal theta tACS enhances verbal working memory in healthy humans with high working memory capacity. Brain Stimul. 2019;12:e86–7. 10.1016/j.brs.2018.12.191.

Alekseichuk I, Turi Z, de Lara GA, Antal A, Paulus W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol. 2016;26:1513–21. 10.1016/j.cub.2016.04.035. PubMed

Kim SE, Kim HS, Kwak Y, Ahn MH, Choi KM, Min BK. Neurodynamic correlates for the cross-frequency coupled transcranial alternating current stimulation during working memory performance. Front Neurosci. 2022;16:1013691. 10.3389/FNINS.2022.1013691/BIBTEX. PubMed PMC

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. PubMed

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011. 10.1155/2011/156869. PubMed PMC

Pittman-polletta B, Hsieh WH, Kaur S, Lo MT, Hu K. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J Neurosci Methods. 2014;226:15–32. PubMed PMC

Berman KF, Schmidt PJ, Rubinow DR, Danaceau MA, Van HJD, Esposito G, et al. Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study in women. Proc Natl Acad Sci. 1997;94:8836–41. 10.1073/PNAS.94.16.8836. PubMed PMC

Amin Z, Epperson CN, Constable RT, Canli T, et al. Effects of estrogen variation on neural correlates of emotional response inhibition. Neuroimage. 2006;32:457–64. 10.1016/J.NEUROIMAGE.2006.03.013. PubMed

Inghilleri M, Conte A, Currà A, Frasca V, Lorenzano C, Berardelli A. Ovarian hormones and cortical excitability: an rTMS study in humans. Clin Neurophysiol. 2004;115:1063–8. 10.1016/J.CLINPH.2003.12.003. PubMed

Vogeti S, Boetzel C, Herrmann CS. Entrainment and spike-timing dependent plasticity—a review of proposed mechanisms of transcranial alternating current stimulation. Front Syst Neurosci. 2022;16:827353. 10.3389/FNSYS.2022.827353/BIBTEX. PubMed PMC

Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE. 2010;5: e13766. 10.1371/JOURNAL.PONE.0013766. PubMed PMC

Mormann F, Osterhage H, Andrzejak RG, Weber B, Fernández G, Fell J, et al. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex. Front Hum Neurosci. 2008;2:202. 10.3389/NEURO.09.003.2008/BIBTEX. PubMed PMC

Adams NE, Teige C, Mollo G, Karapanagiotidis T, Cornelissen PL, Smallwood J, et al. Neural circuits: theta/delta coupling across cortical laminae contributes to semantic cognition. J Neurophysiol. 2019;121:1150. 10.1152/JN.00686.2018. PubMed PMC

Moussavi Z, Kimura K, Kehler L, de Oliveira Francisco C, Lithgow B. A novel program to improve cognitive function in individuals with dementia using transcranial alternating current stimulation (tACS) and tutored cognitive exercises. Front Aging. 2021. 10.3389/FRAGI.2021.632545. PubMed PMC

Kehler L, Francisco CO, Uehara MA, Moussavi Z. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS, vol. 2020-July, Institute of Electrical and Electronics Engineers Inc.; 2020, p. 3649–53. 10.1109/EMBC44109.2020.9175903. PubMed

Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol. 2014;96:42–7. 10.1016/j.biopsycho.2013.11.006. PubMed

Jaušovec N, Jaušovec K, Pahor A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol. 2014;146:1–6. 10.1016/j.actpsy.2013.11.011. PubMed

Fertonani A, Pirulli C, Miniussi C. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci. 2011;31:15416–23. 10.1523/JNEUROSCI.2002-11.2011. PubMed PMC

Greve KW. The WCST-64: a standardized short-form of the Wisconsin Card Sorting Test. Clin Neuropsychol. 2001;15:228–34. 10.1076/CLIN.15.2.228.1901. PubMed

Miles S, Howlett CA, Berryman C, Nedeljkovic M, Moseley GL, Phillipou A. Considerations for using the Wisconsin Card Sorting Test to assess cognitive flexibility. Behav Res Methods. 2021;53:2083–91. 10.3758/S13428-021-01551-3/TABLES/2. PubMed

Smith-Seemiller L, Franzen MD, Bowers D. Use of Wisconsin Card Sorting Test short forms in clinical samples. Clin Neuropsychol. 1997;11:421–7. 10.1080/13854049708400472.

Laiacona M, Inzaghi MG, De Tanti A, Capitani E. Wisconsin Card Sorting Test: a new global score, with Italian norms, and its relationship with the Weigl sorting test. Neurol Sci. 2000;21:279–91. 10.1007/S100720070065/METRICS. PubMed

Nelson HE. A modified card sorting test sensitive to frontal lobe defects. Cortex. 1976;12:313–24. 10.1016/S0010-9452(76)80035-4. PubMed

Herrmann CS, Strüber D, Helfrich RF, Engel AK. EEG oscillations: from correlation to causality. Int J Psychophysiol. 2016;103:12–21. 10.1016/j.ijpsycho.2015.02.003. PubMed

Giandomenico K, Baron LS, Gul A, Arbel Y. Between shifting and feedback processing in the Wisconsin Card Sorting Test in children with developmental language disorder. Brain Sci. 2023;13:1128. 10.3390/BRAINSCI13081128. PubMed PMC

Bohon C, Weinbach N, Lock J. Performance and brain activity during the Wisconsin Card Sorting Test in adolescents with obsessive–compulsive disorder and adolescents with weight-restored anorexia nervosa. Eur Child Adolesc Psychiatry. 2020;29:217–26. 10.1007/S00787-019-01350-4/METRICS. PubMed PMC

Jaeger J. Digit symbol substitution test: the case for sensitivity over specificity in neuropsychological testing. J Clin Psychopharmacol. 2018;38:513. 10.1097/JCP.0000000000000941. PubMed PMC

Patel T, Kurdi MS. A comparative study between oral melatonin and oral midazolam on preoperative anxiety, cognitive, and psychomotor functions. J Anaesthesiol Clin Pharmacol. 2015;31:37–43. 10.4103/0970-9185.150534. PubMed PMC

Wesnes KA. The value of assessing cognitive function in drug development. Dialogues Clin Neurosci. 2000;2:183. 10.31887/DCNS.2000.2.3/KWESNES. PubMed PMC

Pratt DN, Luther L, Kinney KS, Osborne KJ, Corlett PR, Powers AR, et al. Comparing a computerized digit symbol test to a pen-and-paper classic. Schizophr Bull Open. 2023. 10.1093/SCHIZBULLOPEN/SGAD027. PubMed PMC

Rabbitt P. Methodology of frontal and executive function. Hove: Psychology Press; 2004. p. 1–257. 10.4324/9780203344187.

Albinet CT, Boucard G, Bouquet CA, Audiffren M. Processing speed and executive functions in cognitive aging: how to disentangle their mutual relationship? Brain Cogn. 2012;79:1–11. 10.1016/J.BANDC.2012.02.001. PubMed

Sobczak-Edmans M, Lo YC, Hsu YC, Chen YJ, Kwok FY, Chuang KH, et al. Cerebro-cerebellar pathways for verbal working memory. Front Hum Neurosci. 2019;12:416704. 10.3389/FNHUM.2018.00530/BIBTEX. PubMed PMC

Klabes J, Babilon S, Zandi B, Khanh TQ. The Sternberg paradigm: correcting encoding latencies in visual and auditory test designs. Vision. 2021. 10.3390/VISION5020021. PubMed PMC

Roznowski M, Smith ML. A note on some psychometric properties of Sternberg task performance: modifications to content. Intelligence. 1993;17:389–98. 10.1016/0160-2896(93)90006-Q.

Corbin L, Marquer J. Is sternberg’s memory scanning task really a short-termmemory task? Swiss J Psychol. 2013;72:181–96. 10.1024/1421-0185/A000112.

Van Dun K, Mariën P. Cerebellar-induced aphasia and related language disorders. In: Mariën P, Manto M, editors. Linguist cerebellum. Cambridge: Academic Press; 2016. p. 107–33. 10.1016/B978-0-12-801608-4.00006-2.

Kelber P, Gierlich M, Göth J, Jeschke MG, Mackenzie IG, Mittelstädt V. A diffusion model analysis of object-based selective attention in the Eriksen flanker task. Exp Psychol. 2023;70:155–70. 10.1027/1618-3169/A000588. PubMed PMC

Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9. 10.3758/BF03203267.

Stins J, Polderman J, Boomsma D, De Geus E. Conditional accuracy in response interference tasks: evidence fromthe Eriksen flanker task and the spatial conflict task. Adv Cogn Psychol. 2007;3:409. 10.2478/V10053-008-0005-4. PubMed PMC

Vogel EK, McCollough AW, Machizawa MG. Neural measures reveal individual differences in controlling access to working memory. Nature. 2005;438(7067):500–3. 10.1038/nature04171. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...