Improving working memory by electrical stimulation and cross-frequency coupling
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39354549
PubMed Central
PMC11446076
DOI
10.1186/s13041-024-01142-1
PII: 10.1186/s13041-024-01142-1
Knihovny.cz E-zdroje
- Klíčová slova
- Electroencephalography (EEG), Power spectral density (PSD), Theta-gamma peak-coupled transcranial alternating current stimulation, Transcranial alternating current stimulation (tACS), Working memory (WM),
- MeSH
- chování fyziologie MeSH
- dospělí MeSH
- elektrická stimulace MeSH
- elektroencefalografie MeSH
- gama rytmus EEG fyziologie MeSH
- krátkodobá paměť * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- theta rytmus EEG fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
Zobrazit více v PubMed
Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39. 10.1038/nrn1201. PubMed
Logie RH. The functional organization and capacity limits of working memory. Curr Dir Psychol Sci. 2011;20:240–5. 10.1177/0963721411415340.
Baddeley A. The fractionation of working memory. Proc Natl Acad Sci USA. 1996;93:13468. 10.1073/PNAS.93.24.13468. PubMed PMC
Bruyer R, Scailquin JC. The visuospatial sketchpad for mental images: testing the multicomponent model of working memory. Acta Psychol. 1998;98:17–36. 10.1016/S0001-6918(97)00053-X. PubMed
Sims VK, Hegarty M. Mental animation in the visuospatial sketchpad: evidence from dual-task studies. Mem Cognit. 1997;25:32–332. PubMed
Zhenzhu Y, Zhang M, Zhou X. Chinese science bulletin updating verbal and visuospatial working memory: are the processes parallel? Chin Sci Bull. 2008;53:2175–85. 10.1007/s11434-008-0299-0.
Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100. 10.1006/COGP.1999.0734. PubMed
Stegmayer K, Usher J, Trost S, Henseler I, Tost H, Rietschel M, et al. Disturbed cortico–amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci. 2015;265:303–11. 10.1007/s00406-014-0517-5. PubMed
Maehler C, Schuchardt K. Working memory in children with specific learning disorders and/or attention deficits. Learn Individ Differ. 2016;49:341–7. 10.1016/j.lindif.2016.05.007.
Grot S, Légaré VP, Lipp O, Soulières I, Dolcos F, Luck D. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia. Schizophr Res. 2017;188:68–74. 10.1016/j.schres.2017.01.021. PubMed
Cowan N. What are the differences between long-term, short-term, and working memory? Prog Brain Res. 2008;169:323. 10.1016/S0079-6123(07)00020-9. PubMed PMC
Cowan N. Working memory underpins cognitive development, learning, and education. Educ Psychol Rev. 2014;26:197–223. 10.1007/s10648-013-9246-y. PubMed PMC
Ando M, Kukihara H, Ide N. Executive function measured by Stroop test and mood for elderly people in a facility for the elderly. Clin Case Rep Rev. 2017. 10.15761/CCRR.1000305.
Gläscher J, Adolphs R, Tranel D. Model-based lesion mapping of cognitive control using the Wisconsin card sorting test. Nat Commun. 2019;10(1):1–12. 10.1038/s41467-018-07912-5. PubMed PMC
Parr WV, White MJ. Delayed matching-to-sample performance as a measure of human visuospatial working memory. Bull Psychon Soc. 2013;30(5):369–72. 10.3758/BF03334092.
Foster JL, Shipstead Z, Harrison TL, Hicks KL, Redick TS, Engle RW. Shortened complex span tasks can reliably measure working memory capacity. Mem Cogn. 2014;43(2):226–36. 10.3758/S13421-014-0461-7. PubMed
Jensen O, Spaak E, Zumer JM. Human brain oscillations: from physiological mechanisms to analysis and cognition. In: Supek S, Aine CJ, editors. Magnetoencephalography: from signals to dynamic cortical networks, vol. 9783642330. Berlin Heidelberg: Springer-Verlag; 2014. p. 359–403.
Cebolla AM, Cheron G. Understanding neural oscillations in the human brain: from movement to consciousness and vice versa. Front Psychol. 2019;10:1930. 10.3389/fpsyg.2019.01930. PubMed PMC
Jensen O, Spaak E, Zumer JM. Human brain oscillations: from physiological mechanisms to analysis and cognition. In: Supek S, Aine CJ, editors. Magnetoencephalography. Berlin: Springer International Publishing; 2019. p. 1–46. 10.1007/978-3-319-62657-4_17-1.
Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci. 2014;18:16–25. 10.1016/j.tics.2013.10.010. PubMed
Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11:267–9. 10.1016/j.tics.2007.05.003. PubMed
Bahramisharif A, Jensen O, Jacobs J, Lisman J. Serial representation of items during working memory maintenance at letter-selective cortical sites. PLOS Biol. 2018;16: e2003805. 10.1371/JOURNAL.PBIO.2003805. PubMed PMC
Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci USA. 2010;107:3228–33. 10.1073/pnas.0911531107. PubMed PMC
Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013. 10.1016/j.neuron.2013.03.007. PubMed PMC
Lisman JE, Idiart MAP. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–5. 10.1126/science.7878473. PubMed
Jensen O, Lisman JE. Novel lists of 7±2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn Mem. 1996;3:257–63. PubMed
Herman PA, Lundqvist M, Lansner A. Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 2013;1536:68–87. 10.1016/j.brainres.2013.08.002. PubMed
Van Vugt MK, Chakravarthi R, Lachaux J-P. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front Hum Neurosci. 2014;8:696. 10.3389/fnhum.2014.00696. PubMed PMC
Adrian ED, Matthews BHC. The interpretation of potential waves in the cortex. J Physiol. 1934;81:440–71. 10.1113/jphysiol.1934.sp003147. PubMed PMC
Whittingstall K, Logothetis NK. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron. 2009;64:281–9. 10.1016/j.neuron.2009.08.016. PubMed
Sahlem GL, Badran BW, Halford JJ, Williams NR, Korte JE, Leslie K, et al. Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study. Brain Stimul. 2015;8:528–34. 10.1016/j.brs.2015.01.414. PubMed PMC
Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3. 10.1038/nature05278. PubMed
Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23:843–9. 10.1038/mp.2017.59. PubMed PMC
Lee H, Fell J, Axmacher N. Electrical engram: how deep brain stimulation affects memory. Trends Cogn Sci. 2013;17:574–84. 10.1016/j.tics.2013.09.002. PubMed
Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–93. 10.1038/NCPNEURO0530. PubMed
Filmer HL, Dux PE, Mattingley JB. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 2014;37:742–53. 10.1016/J.TINS.2014.08.003. PubMed
Monti A, Ferrucci R, Fumagalli M, Mameli F, Cogiamanian F, Ardolino G, et al. Transcranial direct current stimulation (tDCS) and language. J Neurol Neurosurg Psychiatry. 2013;84:832–42. 10.1136/JNNP-2012-302825. PubMed PMC
Krause MR, Vieira PG, Pack CC. Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity? PLOS Biol. 2023;21: e3001973. 10.1371/JOURNAL.PBIO.3001973. PubMed PMC
Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul Basic, Transl Clin Res Neuromodul. 2008;1:206–23. 10.1016/J.BRS.2008.06.004. PubMed
Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018. 10.1038/s41593-017-0054-4. PubMed
Antal A, Nitsche MA, Paulus W. Transcranial direct current stimulation and the visual cortex. Brain Res Bull. 2006;68:459–63. 10.1016/J.BRAINRESBULL.2005.10.006. PubMed
Been G, Ngo TT, Miller SM, Fitzgerald PB. The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Res Rev. 2007;56:346–61. 10.1016/J.BRAINRESREV.2007.08.001. PubMed
Başar E, Başar-Eroglu C, Karakaş S, Schürmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39:241–8. 10.1016/S0167-8760(00)00145-8. PubMed
Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80:751–64. 10.1016/J.NEURON.2013.10.002/ATTACHMENT/C0391771-2049-448E-B7FF-A031D0FE94B5/MMC1.PDF. PubMed PMC
Vieira PG, Krause MR, Pack CC. tACS entrains neural activity while somatosensory input is blocked. PLOS Biol. 2020;18: e3000834. 10.1371/JOURNAL.PBIO.3000834. PubMed PMC
Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci U S A. 2019;116:5747–55. 10.1073/PNAS.1815958116/SUPPL_FILE/PNAS.1815958116.SAPP.PDF. PubMed PMC
Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:54850. 10.3389/FNHUM.2013.00317/BIBTEX. PubMed PMC
Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (a-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8:499–508. 10.1016/j.brs.2014.12.004. PubMed PMC
Başar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci. 2013;15:291–300. 10.31887/dcns.2013.15.3/ebasar. PubMed PMC
Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115:1490–505. 10.1016/j.clinph.2004.01.001. PubMed
Mably AJ, Colgin LL. Gamma oscillations in cognitive disorders. Curr Opin Neurobiol. 2018;52:182–7. 10.1016/J.CONB.2018.07.009. PubMed PMC
Abend R, Jalon I, Gurevitch G, Sar-El R, Shechner T, Pine DS, et al. Modulation of fear extinction processes using transcranial electrical stimulation. Transl Psychiatry. 2016;6(10):e913–e913. 10.1038/tp.2016.197. PubMed PMC
Supriya S, Siuly S, Wang H, Zhang Y. Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf Sci Syst. 2020;8:33. 10.1007/S13755-020-00129-1. PubMed PMC
Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16: e2005348. 10.1371/journal.pbio.2005348. PubMed PMC
Jones KT, Arciniega H, Berryhill ME. Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Res. 2019;1720:146324. 10.1016/J.BRAINRES.2019.146324. PubMed
Sahu PP, Tseng P. Frontoparietal theta tACS nonselectively enhances encoding, maintenance, and retrieval stages in visuospatial working memory. Neurosci Res. 2021;172:41–50. 10.1016/J.NEURES.2021.05.005. PubMed
Gonzalez-Perez M, Wakui E, Thoma V, Nitsche MA, Rivolta D. Transcranial alternating current stimulation (tACS) at 40 Hz enhances face and object perception. Neuropsychologia. 2019;135:107237. 10.1016/J.NEUROPSYCHOLOGIA.2019.107237. PubMed
Kleinert ML, Szymanski C, Müller V. Frequency-unspecific effects of θ-tACS related to a visuospatial working memory task. Front Hum Neurosci. 2017;11:367. 10.3389/fnhum.2017.00367. PubMed PMC
Yang D, Ghafoor U, Eggebrecht AT, Hong KS. Effectiveness assessment of repetitive transcranial alternating current stimulation with concurrent EEG and fNIRS measurement. Heal Inf Sci Syst. 2023;11:1–13. 10.1007/S13755-023-00233-Y/METRICS. PubMed PMC
Guo X, Li Z, Zhang L, Liu Q. Modulation of visual working memory performance via different theta frequency stimulations. Brain Sci. 2021;11:1358. 10.3390/BRAINSCI11101358. PubMed PMC
Zeng L, Guo M, Wu R, Luo Y, Wei P. The effects of electroencephalogram feature-based transcranial alternating current stimulation on working memory and electrophysiology. Front Aging Neurosci. 2022;14:828377. 10.3389/FNAGI.2022.828377. PubMed PMC
Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22:1314–8. 10.1016/j.cub.2012.05.021. PubMed
Tseng P, Chang YT, Chang CF, Liang WK, Juan CH. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci Rep. 2016;6:1–15. 10.1038/srep32138. PubMed PMC
Pahor A, Jaušovec N. The effects of theta and gamma tACS on working memory and electrophysiology. Front Hum Neurosci. 2018;11:651. 10.3389/fnhum.2017.00651. PubMed PMC
Alekseichuk I, Pabel SC, Antal A, Paulus W. Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci. 2017;35:147–58. 10.3233/RNN-160714. PubMed
Tseng P, Iu KC, Juan CH. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci Rep. 2018;8:1–9. 10.1038/s41598-017-18449-w. PubMed PMC
Feurra M, Galli G, Pavone EF, Rossi A, Rossi S. Frequency-specific insight into short-term memory capacity. J Neurophysiol. 2016;116:153–8. 10.1152/jn.01080.2015. PubMed PMC
Borghini G, Candini M, Filannino C, Hussain M, Walsh V, Romei V, et al. Alpha oscillations are causally linked to inhibitory abilities in ageing. J Neurosci. 2018;38:4418–29. 10.1523/JNEUROSCI.1285-17.2018. PubMed PMC
Thompson L, Khuc J, Saccani MS, Zokaei N, Cappelletti M. Gamma oscillations modulate working memory recall precision. Exp Brain Res. 2021;239:2711–24. 10.1007/S00221-021-06051-6. PubMed PMC
Biel AL, Sterner E, Röll L, Sauseng P. Modulating verbal working memory with fronto-parietal transcranial electric stimulation at theta frequency: does it work? Eur J Neurosci. 2022;55:405–25. 10.1111/EJN.15563. PubMed
Hu Z, Samuel IBH, Meyyappan S, Bo K, Rana C, Ding M. Aftereffects of frontoparietal theta tACS on verbal working memory: behavioral and neurophysiological analysis. IBRO Neurosci Rep. 2022;13:469–77. 10.1016/J.IBNEUR.2022.10.013. PubMed PMC
Violante IR, Li LM, Carmichael DW, Lorenz R, Leech R, Hampshire A, et al. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife. 2017. 10.7554/eLife.22001. PubMed PMC
Draaisma LR, Wessel MJ, Moyne M, Morishita T, Hummel FC. Targeting the frontoparietal network using bifocal transcranial alternating current stimulation during a motor sequence learning task in healthy older adults. Brain Stimul. 2022;15:968–79. 10.1016/j.brs.2022.06.012. PubMed
Rauh J, Müller ASM, Nolte G, Haaf M, Mußmann M, Steinmann S, et al. Comparison of transcranial brain stimulation approaches: prefrontal theta alternating current stimulation enhances working memory performance. Front Psychiatry. 2023. 10.3389/FPSYT.2023.1140361. PubMed PMC
Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019;22(5):820–7. 10.1038/s41593-019-0371-x. PubMed PMC
Hu Z, Woods AJ, Samuel IBH, Meyyappan S, Ding M. Proceedings #22: frontoparietal theta tACS enhances verbal working memory in healthy humans with high working memory capacity. Brain Stimul. 2019;12:e86–7. 10.1016/j.brs.2018.12.191.
Alekseichuk I, Turi Z, de Lara GA, Antal A, Paulus W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol. 2016;26:1513–21. 10.1016/j.cub.2016.04.035. PubMed
Kim SE, Kim HS, Kwak Y, Ahn MH, Choi KM, Min BK. Neurodynamic correlates for the cross-frequency coupled transcranial alternating current stimulation during working memory performance. Front Neurosci. 2022;16:1013691. 10.3389/FNINS.2022.1013691/BIBTEX. PubMed PMC
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. PubMed
Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011. 10.1155/2011/156869. PubMed PMC
Pittman-polletta B, Hsieh WH, Kaur S, Lo MT, Hu K. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J Neurosci Methods. 2014;226:15–32. PubMed PMC
Berman KF, Schmidt PJ, Rubinow DR, Danaceau MA, Van HJD, Esposito G, et al. Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study in women. Proc Natl Acad Sci. 1997;94:8836–41. 10.1073/PNAS.94.16.8836. PubMed PMC
Amin Z, Epperson CN, Constable RT, Canli T, et al. Effects of estrogen variation on neural correlates of emotional response inhibition. Neuroimage. 2006;32:457–64. 10.1016/J.NEUROIMAGE.2006.03.013. PubMed
Inghilleri M, Conte A, Currà A, Frasca V, Lorenzano C, Berardelli A. Ovarian hormones and cortical excitability: an rTMS study in humans. Clin Neurophysiol. 2004;115:1063–8. 10.1016/J.CLINPH.2003.12.003. PubMed
Vogeti S, Boetzel C, Herrmann CS. Entrainment and spike-timing dependent plasticity—a review of proposed mechanisms of transcranial alternating current stimulation. Front Syst Neurosci. 2022;16:827353. 10.3389/FNSYS.2022.827353/BIBTEX. PubMed PMC
Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE. 2010;5: e13766. 10.1371/JOURNAL.PONE.0013766. PubMed PMC
Mormann F, Osterhage H, Andrzejak RG, Weber B, Fernández G, Fell J, et al. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex. Front Hum Neurosci. 2008;2:202. 10.3389/NEURO.09.003.2008/BIBTEX. PubMed PMC
Adams NE, Teige C, Mollo G, Karapanagiotidis T, Cornelissen PL, Smallwood J, et al. Neural circuits: theta/delta coupling across cortical laminae contributes to semantic cognition. J Neurophysiol. 2019;121:1150. 10.1152/JN.00686.2018. PubMed PMC
Moussavi Z, Kimura K, Kehler L, de Oliveira Francisco C, Lithgow B. A novel program to improve cognitive function in individuals with dementia using transcranial alternating current stimulation (tACS) and tutored cognitive exercises. Front Aging. 2021. 10.3389/FRAGI.2021.632545. PubMed PMC
Kehler L, Francisco CO, Uehara MA, Moussavi Z. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS, vol. 2020-July, Institute of Electrical and Electronics Engineers Inc.; 2020, p. 3649–53. 10.1109/EMBC44109.2020.9175903. PubMed
Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol. 2014;96:42–7. 10.1016/j.biopsycho.2013.11.006. PubMed
Jaušovec N, Jaušovec K, Pahor A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol. 2014;146:1–6. 10.1016/j.actpsy.2013.11.011. PubMed
Fertonani A, Pirulli C, Miniussi C. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci. 2011;31:15416–23. 10.1523/JNEUROSCI.2002-11.2011. PubMed PMC
Greve KW. The WCST-64: a standardized short-form of the Wisconsin Card Sorting Test. Clin Neuropsychol. 2001;15:228–34. 10.1076/CLIN.15.2.228.1901. PubMed
Miles S, Howlett CA, Berryman C, Nedeljkovic M, Moseley GL, Phillipou A. Considerations for using the Wisconsin Card Sorting Test to assess cognitive flexibility. Behav Res Methods. 2021;53:2083–91. 10.3758/S13428-021-01551-3/TABLES/2. PubMed
Smith-Seemiller L, Franzen MD, Bowers D. Use of Wisconsin Card Sorting Test short forms in clinical samples. Clin Neuropsychol. 1997;11:421–7. 10.1080/13854049708400472.
Laiacona M, Inzaghi MG, De Tanti A, Capitani E. Wisconsin Card Sorting Test: a new global score, with Italian norms, and its relationship with the Weigl sorting test. Neurol Sci. 2000;21:279–91. 10.1007/S100720070065/METRICS. PubMed
Nelson HE. A modified card sorting test sensitive to frontal lobe defects. Cortex. 1976;12:313–24. 10.1016/S0010-9452(76)80035-4. PubMed
Herrmann CS, Strüber D, Helfrich RF, Engel AK. EEG oscillations: from correlation to causality. Int J Psychophysiol. 2016;103:12–21. 10.1016/j.ijpsycho.2015.02.003. PubMed
Giandomenico K, Baron LS, Gul A, Arbel Y. Between shifting and feedback processing in the Wisconsin Card Sorting Test in children with developmental language disorder. Brain Sci. 2023;13:1128. 10.3390/BRAINSCI13081128. PubMed PMC
Bohon C, Weinbach N, Lock J. Performance and brain activity during the Wisconsin Card Sorting Test in adolescents with obsessive–compulsive disorder and adolescents with weight-restored anorexia nervosa. Eur Child Adolesc Psychiatry. 2020;29:217–26. 10.1007/S00787-019-01350-4/METRICS. PubMed PMC
Jaeger J. Digit symbol substitution test: the case for sensitivity over specificity in neuropsychological testing. J Clin Psychopharmacol. 2018;38:513. 10.1097/JCP.0000000000000941. PubMed PMC
Patel T, Kurdi MS. A comparative study between oral melatonin and oral midazolam on preoperative anxiety, cognitive, and psychomotor functions. J Anaesthesiol Clin Pharmacol. 2015;31:37–43. 10.4103/0970-9185.150534. PubMed PMC
Wesnes KA. The value of assessing cognitive function in drug development. Dialogues Clin Neurosci. 2000;2:183. 10.31887/DCNS.2000.2.3/KWESNES. PubMed PMC
Pratt DN, Luther L, Kinney KS, Osborne KJ, Corlett PR, Powers AR, et al. Comparing a computerized digit symbol test to a pen-and-paper classic. Schizophr Bull Open. 2023. 10.1093/SCHIZBULLOPEN/SGAD027. PubMed PMC
Rabbitt P. Methodology of frontal and executive function. Hove: Psychology Press; 2004. p. 1–257. 10.4324/9780203344187.
Albinet CT, Boucard G, Bouquet CA, Audiffren M. Processing speed and executive functions in cognitive aging: how to disentangle their mutual relationship? Brain Cogn. 2012;79:1–11. 10.1016/J.BANDC.2012.02.001. PubMed
Sobczak-Edmans M, Lo YC, Hsu YC, Chen YJ, Kwok FY, Chuang KH, et al. Cerebro-cerebellar pathways for verbal working memory. Front Hum Neurosci. 2019;12:416704. 10.3389/FNHUM.2018.00530/BIBTEX. PubMed PMC
Klabes J, Babilon S, Zandi B, Khanh TQ. The Sternberg paradigm: correcting encoding latencies in visual and auditory test designs. Vision. 2021. 10.3390/VISION5020021. PubMed PMC
Roznowski M, Smith ML. A note on some psychometric properties of Sternberg task performance: modifications to content. Intelligence. 1993;17:389–98. 10.1016/0160-2896(93)90006-Q.
Corbin L, Marquer J. Is sternberg’s memory scanning task really a short-termmemory task? Swiss J Psychol. 2013;72:181–96. 10.1024/1421-0185/A000112.
Van Dun K, Mariën P. Cerebellar-induced aphasia and related language disorders. In: Mariën P, Manto M, editors. Linguist cerebellum. Cambridge: Academic Press; 2016. p. 107–33. 10.1016/B978-0-12-801608-4.00006-2.
Kelber P, Gierlich M, Göth J, Jeschke MG, Mackenzie IG, Mittelstädt V. A diffusion model analysis of object-based selective attention in the Eriksen flanker task. Exp Psychol. 2023;70:155–70. 10.1027/1618-3169/A000588. PubMed PMC
Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9. 10.3758/BF03203267.
Stins J, Polderman J, Boomsma D, De Geus E. Conditional accuracy in response interference tasks: evidence fromthe Eriksen flanker task and the spatial conflict task. Adv Cogn Psychol. 2007;3:409. 10.2478/V10053-008-0005-4. PubMed PMC
Vogel EK, McCollough AW, Machizawa MG. Neural measures reveal individual differences in controlling access to working memory. Nature. 2005;438(7067):500–3. 10.1038/nature04171. PubMed