Relative inhibitory activities of newly developed diazabicyclooctanes, boronic acid derivatives, and penicillin-based sulfone β-lactamase inhibitors against broad-spectrum AmpC β-lactamases

. 2024 Nov 06 ; 68 (11) : e0077524. [epub] 20241004

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39365068

Grantová podpora
Université de Fribourg (Universität Freiburg)
National Institute of Virology and Bacteriology (Programme EXCELES, ID Project No. LX22NPO5103) - funded by the European Union - Next Generation EU

The relative inhibitory activities of diazabicyclooctanes (avibactam, relebactam, zidebactam, nacubactam, durlobactam), boronic acid derivatives (vaborbactam, taniborbactam, xeruborbactam), and penicillin-based sulfone derivative enmetazobactam were evaluated against several intrinsic and acquired class C β-lactamases. By contrast to vaborbactam and enmetazobactam, taniborbactam, xeruborbactam, and all diazabicyclooctanes demonstrated effective activities against most AmpC enzymes. Notably, durlobactam exhibited the most pronounced inhibitory effect. Interstingly, the chromosomal AmpC of Acinetobacter baumannii was the least sensitive enzyme to the newly developed β-lactamase inhibitors.

Zobrazit více v PubMed

Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. doi:10.1038/nrmicro3380 PubMed DOI

Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. 2018. Antimicrobial resistance in Escherichia coli. Microbiol Spectr 6. doi:10.1128/microbiolspec.ARBA-0026-2017 PubMed DOI PMC

Ambler RP. 1980. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331. doi:10.1098/rstb.1980.0049 PubMed DOI

Nordmann P, Poirel L. 2002. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8:321–331. doi:10.1046/j.1469-0691.2002.00401.x PubMed DOI

Philippon A, Arlet G, Labia R, Iorga BI. 2022. Class C β-lactamases: molecular characteristics. Clin Microbiol Rev 35:e0015021. doi:10.1128/cmr.00150-21 PubMed DOI PMC

Jacoby GA. 2009. AmpC beta-lactamases. Clin Microbiol Rev 22:161–182. doi:10.1128/CMR.00036-08 PubMed DOI PMC

Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. 2020. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev 34:e00115-20. doi:10.1128/CMR.00115-20 PubMed DOI PMC

Theuretzbacher U. 2023. Evaluating the innovative potential of the global antibacterial pipeline. Clin Microbiol Infect:S1198-743X(23)00490-1. doi:10.1016/j.cmi.2023.09.024 PubMed DOI

Le Terrier C, Nordmann P, Freret C, Seigneur M, Poirel L. 2023. Impact of acquired broad spectrum β-lactamases on susceptibility to novel combinations made of β-lactams (aztreonam, cefepime, meropenem, and imipenem) and novel β-lactamase inhibitors in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 67:e00339-23. doi:10.1128/aac.00339-23 PubMed DOI PMC

Le Terrier C, Freire S, Nordmann P, Poirel L. 2024. Multidrug-resistant Gram-negative clinical isolates with reduced susceptibility/resistance to cefiderocol: which are the best present and future therapeutic alternatives? Eur J Clin Microbiol Infect Dis 43:339–354. doi:10.1007/s10096-023-04732-4 PubMed DOI PMC

Le Terrier C, Nordmann P, Poirel L. 2022. In vitro activity of aztreonam in combination with newly developed β-lactamase inhibitors against MDR Enterobacterales and Pseudomonas aeruginosa producing metallo-β-lactamases. J Antimicrob Chemother 78:101–107. doi:10.1093/jac/dkac360 PubMed DOI

Le Terrier C, Nordmann P, Buchs C, Poirel L. 2024. Effect of modification of penicillin-binding protein 3 on susceptibility to ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, aztreonam-avibactam, cefepime-taniborbactam, and cefiderocol of Escherichia coli strains producing broad-spectrum β-lactamases. Antimicrob Agents Chemother 68:e01548-23. doi:10.1128/aac.01548-23 PubMed DOI PMC

Le Terrier C, Freire S, Viguier C, Findlay J, Nordmann P, Poirel L. 2024. Relative inhibitory activities of the broad-spectrum β-lactamase inhibitor xeruborbactam in comparison with taniborbactam against metallo-β-lactamases produced in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother:e0157023. doi:10.1128/aac.01570-23 PubMed DOI PMC

Rodríguez-Martínez JM, Poirel L, Nordmann P. 2009. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:1766–1771. doi:10.1128/AAC.01410-08 PubMed DOI PMC

Fraile-Ribot PA, Cabot G, Mulet X, Periañez L, Martín-Pena ML, Juan C, Pérez JL, Oliver A. 2018. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother 73:658–663. doi:10.1093/jac/dkx424 PubMed DOI

Mammeri H, Poirel L, Mangeney N, Nordmann P. 2003. Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to beta-lactams. Antimicrob Agents Chemother 47:1536–1542. doi:10.1128/AAC.47.5.1536-1542.2003 PubMed DOI PMC

Mammeri H, Poirel L, Nazik H, Nordmann P. 2006. Cloning and functional characterization of the ambler class C beta-lactamase of Yersinia ruckeri. FEMS Microbiol Lett 257:57–62. doi:10.1111/j.1574-6968.2006.00148.x PubMed DOI

EUCAST . 2024. Breakpoint tables for interpretation of MICs and zone diameters. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf

Clinical and Laboratory Standards Institute . 2023. Performance standards for antimicrobial susceptibility testing. In CLSI M100, 33rd ed. Clinical and Laboratory Standards Institute, Wayne, PA.

EUCAST . 2024. MIC determination of non-fastidious and fastidious organisms. Available from: https://www.eucast.org/ast_of_bacteria/mic_determination

EUCAST . 2024. QC tables 14.0. https://www.eucast.org/ ast_of_bacteria/quality_control.

Sun D, Tsivkovski R, Pogliano J, Tsunemoto H, Nelson K, Rubio-Aparicio D, Lomovskaya O. 2022. Intrinsic antibacterial activity of xeruborbactam in vitro: assessing spectrum and mode of action. Antimicrob Agents Chemother 66:e00879-22. doi:10.1128/aac.00879-22 PubMed DOI PMC

Slater CL, Winogrodzki J, Fraile-Ribot PA, Oliver A, Khajehpour M, Mark BL. 2020. Adding insult to injury: mechanistic basis for how AmpC mutations allow Pseudomonas aeruginosa to accelerate cephalosporin hydrolysis and evade avibactam. Antimicrob Agents Chemother 64:e00894-20. doi:10.1128/AAC.00894-20 PubMed DOI PMC

Le Terrier C, Viguier C, Nordmann P, Vila AJ, Poirel L. 2024. Relative inhibitory activities of the broad-spectrum β-lactamase inhibitor taniborbactam against metallo-β-lactamases. Antimicrob Agents Chemother 68:e0099123. doi:10.1128/aac.00991-23 PubMed DOI PMC

Le Terrier C, Nordmann P, Sadek M, Poirel L. 2023. In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates. J Antimicrob Chemother 78:1191–1194. doi:10.1093/jac/dkad061 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...