Hierarchically Porous Polyacetylene Networks: Adsorptive Photocatalysts for Efficient Bisphenol A Removal from Water
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39399892
PubMed Central
PMC11468696
DOI
10.1021/acspolymersau.4c00032
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In this article, we report a series of functionalized polyacetylene-type networks formed by chain-growth insertion coordination polymerization in high internal phase emulsions (HIPEs). All polymerized HIPEs (polyHIPEs) contain a hierarchically structured, 3D-interconnected porous framework consisting of a micro-, meso- and macropore system, resulting in exceptionally high specific surface areas (up to 1055 m2·g-1) and total porosities of over 95%. The combination of π-conjugated and hierarchically porous structure in one material enabled the use of these polyacetylene polyHIPEs as adsorptive photocatalysts for the removal of chemical contaminants from water. All polyacetylene polyHIPEs demonstrated high efficiency in the adsorption of bisphenol A from water (up to 48%) and the subsequent photocatalytic degradation. Surprisingly, high adsorption capacity did not affect the photocatalytic efficiency (up to 58%). On the contrary, this dual function seems to be very promising, as some polyacetylene polyHIPEs almost completely removed bisphenol A from water (97%) through the adsorption-photooxidation mechanism. It also appears that the presence of polar functional side groups in the polyacetylene backbone improves the contact of the polyacetylene network with the aqueous bisphenol A solution, which can thus be more easily adsorbed and subsequently oxidized, compensating for the lower specific surface area of some networks, namely, 471 and 308 m2·g-1 in the case of 3-ethynylphenol- and 3-ethynylaniline-based polyacetylene polyHIPEs, respectively.
See more in PubMed
Fang W.; Peng Y.; Muir D.; Lin J.; Zhang X. A Critical Review of Synthetic Chemicals in Surface Waters of the US, the EU and China. Environ. Int. 2019, 131, 10499410.1016/j.envint.2019.104994. PubMed DOI
Dolan F.; Lamontagne J.; Link R.; Hejazi M.; Reed P.; Edmonds J. Evaluating the Economic Impact of Water Scarcity in a Changing World. Nat. Commun. 2021, 12 (1), 191510.1038/s41467-021-22194-0. PubMed DOI PMC
Yadav S.; Ibrar I.; Al-Juboori R. A.; Singh L.; Ganbat N.; Kazwini T.; Karbassiyazdi E.; Samal A. K.; Subbiah S.; Altaee A. Updated Review on Emerging Technologies for PFAS Contaminated Water Treatment. Chem. Eng. Res. Des. 2022, 182, 667–700. 10.1016/j.cherd.2022.04.009. DOI
Wu J.; Xu F.; Li S.; Ma P.; Zhang X.; Liu Q.; Fu R.; Wu D. Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv. Mater. 2019, 31 (4), 180292210.1002/adma.201802922. PubMed DOI
Waheed A.; Baig N.; Ullah N.; Falath W. Removal of Hazardous Dyes, Toxic Metal Ions and Organic Pollutants from Wastewater by Using Porous Hyper-Cross-Linked Polymeric Materials: A Review of Recent Advances. J. Environ. Manage. 2021, 287, 11236010.1016/j.jenvman.2021.112360. PubMed DOI
Plieva F. M.; Kirsebom H.; Mattiasson B. Preparation of Macroporous Cryostructurated Gel Monoliths, Their Characterization and Main Applications. J. Sep. Sci. 2011, 34 (16–17), 2164–2172. 10.1002/jssc.201100199. PubMed DOI
Türkmen D.; Bakhshpour M.; Akgönüllü S.; Aşır S.; Denizli A. Heavy Metal Ions Removal From Wastewater Using Cryogels: A Review. Front. Sustainability 2022, 3, 12638210.3389/frsus.2022.765592. DOI
Baimenov A.; Berillo D. A.; Poulopoulos S. G.; Inglezakis V. J. A Review of Cryogels Synthesis, Characterization and Applications on the Removal of Heavy Metals from Aqueous Solutions. Adv. Colloid Interface Sci. 2020, 276, 10208810.1016/j.cis.2019.102088. PubMed DOI
Loo S.-L.; Lim T.-T.; Krantz W. B.; Fane A. G.; Hu X. Potential Evaluation and Perspectives on Using Sponge-like Superabsorbent Cryogels for Onsite Water Treatment in Emergencies. Desalination Water Treat 2015, 53 (6), 1506–1515. 10.1080/19443994.2014.943064. DOI
Yang L.; Peng Y.; Luo X.; Dan Y.; Ye J.; Zhou Y.; Zou Z. Beyond C3N4 π-Conjugated Metal-Free Polymeric Semiconductors for Photocatalytic Chemical Transformations. Chem. Soc. Rev. 2021, 50 (3), 2147–2172. 10.1039/D0CS00445F. PubMed DOI
Xiao L.; Ling Y.; Alsbaiee A.; Li C.; Helbling D. E.; Dichtel W. R. β-Cyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations. J. Am. Chem. Soc. 2017, 139 (23), 7689–7692. 10.1021/jacs.7b02381. PubMed DOI
Ji W.; Xiao L.; Ling Y.; Ching C.; Matsumoto M.; Bisbey R. P.; Helbling D. E.; Dichtel W. R. Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. J. Am. Chem. Soc. 2018, 140 (40), 12677–12681. 10.1021/jacs.8b06958. PubMed DOI
Klemes M. J.; Ling Y.; Ching C.; Wu C.; Xiao L.; Helbling D. E.; Dichtel W. R. Reduction of a Tetrafluoroterephthalonitrile-β-Cyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. Angew. Chem., Int. Ed. 2019, 58 (35), 12049–12053. 10.1002/anie.201905142. PubMed DOI
Sapurina I. Yu.; Shishov M. A.; Ivanova V. T. Sorbents for Water Purification Based on Conjugated Polymers. Russ. Chem. Rev. 2020, 89 (10), 1115.10.1070/RCR4955. DOI
Su Y.; Wang F.; Wu S.; Fan Y.; Bai W.; Wang S.; Sun H.; Zhu Z.; Liang W.; Li A. Template-Assisted Preparation of Conjugated Microporous Polymers Membranes for Selective Separation. Sep. Purif. Technol. 2021, 259, 11820310.1016/j.seppur.2020.118203. DOI
Wang T.-X.; Liang H.-P.; Anito D. A.; Ding X.; Han B.-H. Emerging Applications of Porous Organic Polymers in Visible-Light Photocatalysis. J. Mater. Chem. 2020, 8 (15), 7003–7034. 10.1039/D0TA00364F. DOI
Zhang T.; Xing G.; Chen W.; Chen L. Porous Organic Polymers: A Promising Platform for Efficient Photocatalysis. Mater. Chem. Front. 2020, 4 (2), 332–353. 10.1039/C9QM00633H. DOI
Byun J.; Zhang K. A. I. Designing Conjugated Porous Polymers for Visible Light-Driven Photocatalytic Chemical Transformations. Mater. Horiz. 2020, 7 (1), 15–31. 10.1039/C9MH01071H. DOI
Chen W.; Chen P.; Zhang G.; Xing G.; Feng Y.; Yang Y.-W.; Chen L. Macrocycle-Derived Hierarchical Porous Organic Polymers: Synthesis and Applications. Chem. Soc. Rev. 2021, 50 (20), 11684–11714. 10.1039/D1CS00545F. PubMed DOI
Wang B.; Xie Z.; Li Y.; Yang Z.; Chen L. Dual-Functional Conjugated Nanoporous Polymers for Efficient Organic Pollutants Treatment in Water: A Synergistic Strategy of Adsorption and Photocatalysis. Macromolecules 2018, 51 (9), 3443–3449. 10.1021/acs.macromol.8b00669. DOI
Zhang K.; Vobecka Z.; Tauer K.; Antonietti M.; Vilela F. π-Conjugated PolyHIPEs as Highly Efficient and Reusable Heterogeneous Photosensitizers. Chem. Commun. 2013, 49 (95), 11158–11160. 10.1039/c3cc45597a. PubMed DOI
Slováková E.; Ješelnik M.; Žagar E.; Zedník J.; Sedláček J.; Kovačič S. Chain-Growth Insertion Polymerization of 1,3-Diethynylbenzene High Internal Phase Emulsions into Reactive π-Conjugated Foams. Macromolecules 2014, 47 (15), 4864–4869. 10.1021/ma501142d. DOI
Cameron N. R.; Sherrington D. C.. High Internal Phase Emulsions (HIPEs)—Structure, Properties and Use in Polymer Preparation. In Biopolymers Liquid Crystalline Polymers Phase Emulsion; Springer Berlin Heidelberg: Berlin, Heidelberg, 1996; pp 163–21410.1007/3-540-60484-7_4. DOI
Stubenrauch C.; Menner A.; Bismarck A.; Drenckhan W. Emulsion and Foam Templating—Promising Routes to Tailor-Made Porous Polymers. Angew. Chem., Int. Ed. 2018, 57 (32), 10024–10032. 10.1002/anie.201801466. PubMed DOI
Zhang T.; Sanguramath R. A.; Israel S.; Silverstein M. S. Emulsion Templating: Porous Polymers and Beyond. Macromolecules 2019, 52 (15), 5445–5479. 10.1021/acs.macromol.8b02576. DOI
Mork S. W.; Malone B. A.. Continuous Process for Polymerizing, Curing and Drying High Internal Phase Emulsions Background of the Invention. US6299808B1, 2001.
Barby D.; Haq Z.. Low Density Porous Cross-Linked Polymeric Materials and Their Preparation. EP0060138B1, 1986.
Kovačič S.; Silverstein M. S. Superabsorbent, High Porosity, PAMPS-Based Hydrogels through Emulsion Templating. Macromol. Rapid Commun. 2016, 37 (22), 1814–1819. 10.1002/marc.201600249. PubMed DOI
Kovačič S.; Drašinac N.; Pintar A.; Žagar E. Highly Porous Cationic Polyelectrolytes via Oil-in-Water Concentrated Emulsions: Synthesis and Adsorption Kinetic Study. Langmuir 2018, 34 (35), 10353–10362. 10.1021/acs.langmuir.8b01645. PubMed DOI
Cegłowski M.; Schroeder G.; Hoogenboom R. Porous Poly(2-Oxazoline)-Based Polymers for Removal and Quantification of Phenolic Compounds. Chem. Mater. 2020, 32 (15), 6425–6436. 10.1021/acs.chemmater.0c01559. DOI
Jurjevec S.; Žagar E.; Kovačič S. Functional Macroporous Amphoteric Polyelectrolyte Monoliths with Tunable Structures and Properties through Emulsion-Templated Synthesis. J. Colloid Interface Sci. 2020, 575, 480–488. 10.1016/j.jcis.2020.05.016. PubMed DOI
Tobin J. M.; McCabe T. J. D.; Prentice A. W.; Holzer S.; Lloyd G. O.; Paterson M. J.; Arrighi V.; Cormack P. A. G.; Vilela F. Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation. ACS Catal. 2017, 7 (7), 4602–4612. 10.1021/acscatal.7b00888. DOI
Wang Z. J.; Ghasimi S.; Landfester K.; Zhang K. A. I. A Conjugated Porous Poly-Benzobisthiadiazole Network for a Visible Light-Driven Photoredox Reaction. J. Mater. Chem. 2014, 2 (44), 18720–18724. 10.1039/C4TA03887H. DOI
Wang Z. J.; Ghasimi S.; Landfester K.; Zhang K. A. I. Highly Porous Conjugated Polymers for Selective Oxidation of Organic Sulfides under Visible Light. Chem. Commun. 2014, 50 (60), 8177–8180. 10.1039/C4CC02861A. PubMed DOI
Kotnik T.; Žerjav G.; Pintar A.; Žagar E.; Kovačič S. Highly Porous Poly(Arylene Cyano-Vinylene) Beads Derived through the Knoevenagel Condensation of the Oil-in-Oil-in-Oil Double Emulsion Templates. ACS Macro. Lett. 2021, 10 (10), 1248–1253. 10.1021/acsmacrolett.1c00457. PubMed DOI
Wang Z. J.; Landfester K.; Zhang K. A. I. Hierarchically Porous π-Conjugated PolyHIPE as a Heterogeneous Photoinitiator for Free Radical Polymerization under Visible Light. Polym. Chem. 2014, 5 (11), 3559–3562. 10.1039/C4PY00323C. DOI
Jurjevec S.; Žerjav G.; Pintar A.; Žagar E.; Kovačič S. Tunable Poly(Aryleneethynylene) Networks Prepared by Emulsion Templating for Visible-Light-Driven Photocatalysis. Catal. Today 2021, 361, 146–151. 10.1016/j.cattod.2020.01.049. DOI
Kotnik T.; Žerjav G.; Pintar A.; Žagar E.; Kovačič S. Azine- and Imine-Linked Conjugated PolyHIPEs through Schiff-Base Condensation Reaction. Polym. Chem. 2022, 13 (4), 474–478. 10.1039/D1PY01467F. DOI
Ballai G.; Kotnik T.; Finšgar M.; Pintar A.; Kónya Z.; Sápi A.; Kovačič S. Highly Porous Polymer Beads Coated with Nanometer-Thick Metal Oxide Films for Photocatalytic Oxidation of Bisphenol A. ACS Appl. Nano Mater. 2023, 6 (21), 20089–20098. 10.1021/acsanm.3c03891. PubMed DOI PMC
Shirakawa H.; Louis E. J.; MacDiarmid A. G.; Chiang C. K.; Heeger A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH). J. Chem. Soc. Chem. Commun. 1977, (No. 16), 578–580. 10.1039/C39770000578. DOI
Masuda T. Substituted Polyacetylenes: Synthesis, Properties, and Functions. Polym. Rev. 2017, 57 (1), 1–14. 10.1080/15583724.2016.1170701. DOI
Ke Z.; Abe S.; Ueno T.; Morokuma K. Rh-Catalyzed Polymerization of Phenylacetylene: Theoretical Studies of the Reaction Mechanism, Regioselectivity, and Stereoregularity. J. Am. Chem. Soc. 2011, 133 (20), 7926–7941. 10.1021/ja2012565. PubMed DOI
Kishimoto Y.; Eckerle P.; Miyatake T.; Kainosho M.; Ono A.; Ikariya T.; Noyori R. Well-Controlled Polymerization of Phenylacetylenes with Organorhodium(I) Complexes: Mechanism and Structure of the Polyenes. J. Am. Chem. Soc. 1999, 121 (51), 12035–12044. 10.1021/ja991903z. DOI
Trhlíková O.; Zedník J.; Balcar H.; Brus J.; Sedláček J. [Rh(Cycloolefin)(Acac)] Complexes as Catalysts of Polymerization of Aryl- and Alkylacetylenes: Influence of Cycloolefin Ligand and Reaction Conditions. J. Mol. Catal. 2013, 378, 57–66. 10.1016/j.molcata.2013.05.022. DOI
Balcar H.; Sedláček J.; Čejka J.; Vohlídal J. MCM-41-Immobilized [Rh(Cod)OCH3]2 Complex – A Hybrid Catalyst for the Polymerization of Phenylacetylene and Its Ring-Substituted Derivatives. Macromol. Rapid Commun. 2002, 23 (1), 32–37. 10.1002/1521-3927(20020101)23:1<32::AID-MARC32>3.0.CO;2-3. DOI
Sedláček J.; Balcar H. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers. Polym. Rev. 2017, 57 (1), 31–51. 10.1080/15583724.2016.1144207. DOI
Sekerová L.; Lhotka M.; Vyskočilová E.; Faukner T.; Slováková E.; Brus J.; Červený L.; Sedláček J. Hyper-Cross-Linked Polyacetylene-Type Microporous Networks Decorated with Terminal Ethynyl Groups as Heterogeneous Acid Catalysts for Acetalization and Esterification Reactions. Chem. - Eur. J. 2018, 24 (55), 14742–14749. 10.1002/chem.201802432. PubMed DOI
Havelková L.; Bashta B.; Vaňková M.; Zedník J.; Brus J.; Svoboda J.; Vagenknechtová A.; Sedláček J. Functionalized Hyper-Cross-Linked Porous Homopolymers of Ring-Substituted 1,3-Diethynylbenzenes and Their Physisorption Activity. Microporous Mesoporous Mater. 2024, 365, 11290810.1016/j.micromeso.2023.112908. DOI
Šorm D.; Bashta B.; Blahut J.; Císařová I.; Dolejšová Sekerová L.; Vyskočilová E.; Sedláček J. Porous Polymer Networks Cross-Linked by Novel Copper Schiff Base Complex: From Synthesis to Catalytic Activity. Eur. Polym. J. 2023, 184, 11177210.1016/j.eurpolymj.2022.111772. DOI
Makuła P.; Pacia M.; Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9 (23), 6814–6817. 10.1021/acs.jpclett.8b02892. PubMed DOI
Mark H. F.Encyclopedia of Polymer Science and Technology, Concise, 3rd ed.; John Wiley & Sons, 2013; Vol. 1.
Chen W.; Duan L.; Wang L.; Zhu D. Adsorption of Hydroxyl- and Amino-Substituted Aromatics to Carbon Nanotubes. Environ. Sci. Technol. 2008, 42 (18), 6862–6868. 10.1021/es8013612. PubMed DOI
Ji L.; Chen W.; Duan L.; Zhu D. Mechanisms for Strong Adsorption of Tetracycline to Carbon Nanotubes: A Comparative Study Using Activated Carbon and Graphite as Adsorbents. Environ. Sci. Technol. 2009, 43 (7), 2322–2327. 10.1021/es803268b. PubMed DOI
Sun Z.; Zhao L.; Liu C.; Zhen Y.; Ma J. Fast Adsorption of BPA with High Capacity Based on π-π Electron Donor-Acceptor and Hydrophobicity Mechanism Using an in-Situ Sp2 C Dominant N-Doped Carbon. J. Chem. Eng. 2020, 381, 12251010.1016/j.cej.2019.122510. DOI
Yi L.; Zuo L.; Wei C.; Fu H.; Qu X.; Zheng S.; Xu Z.; Guo Y.; Li H.; Zhu D. Enhanced Adsorption of Bisphenol A, Tylosin, and Tetracycline from Aqueous Solution to Nitrogen-Doped Multiwall Carbon Nanotubes via Cation-π and π-π Electron-Donor-Acceptor (EDA) Interactions. Sci. Total Environ. 2020, 719, 13738910.1016/j.scitotenv.2020.137389. PubMed DOI
Xu J.; Wang L.; Zhu Y. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 2012, 28 (22), 8418–8425. 10.1021/la301476p. PubMed DOI
Upoma B. P.; Yasmin S.; Ali Shaikh Md. A.; Jahan T.; Haque Md. A.; Moniruzzaman M.; Kabir M. H. A Fast Adsorption of Azithromycin on Waste-Product-Derived Graphene Oxide Induced by H-Bonding and Electrostatic Interactions. ACS Omega 2022, 7 (34), 29655–29665. 10.1021/acsomega.2c01919. PubMed DOI PMC
Ahmed I.; Hasan Z.; Lee G.; Lee H. J.; Jhung S. H. Contribution of Hydrogen Bonding to Liquid-Phase Adsorptive Removal of Hazardous Organics with Metal-Organic Framework-Based Materials. J. Chem. Eng. 2022, 430, 13259610.1016/j.cej.2021.132596. DOI
Guo S.; Zou Z.; Chen Y.; Long X.; Liu M.; Li X.; Tan J.; Chen R. Synergistic Effect of Hydrogen Bonding and π-π Interaction for Enhanced Adsorption of Rhodamine B from Water Using Corn Straw Biochar. Environ. Pollut. 2023, 320, 12106010.1016/j.envpol.2023.121060. PubMed DOI
Czili H.; Horváth A. Applicability of Coumarin for Detecting and Measuring Hydroxyl Radicals Generated by Photoexcitation of TiO2 Nanoparticles. Appl. Catal., B 2008, 81 (3), 295–302. 10.1016/j.apcatb.2008.01.001. DOI