• This record comes from PubMed

Hierarchically Porous Polyacetylene Networks: Adsorptive Photocatalysts for Efficient Bisphenol A Removal from Water

. 2024 Oct 09 ; 4 (5) : 420-427. [epub] 20240606

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

In this article, we report a series of functionalized polyacetylene-type networks formed by chain-growth insertion coordination polymerization in high internal phase emulsions (HIPEs). All polymerized HIPEs (polyHIPEs) contain a hierarchically structured, 3D-interconnected porous framework consisting of a micro-, meso- and macropore system, resulting in exceptionally high specific surface areas (up to 1055 m2·g-1) and total porosities of over 95%. The combination of π-conjugated and hierarchically porous structure in one material enabled the use of these polyacetylene polyHIPEs as adsorptive photocatalysts for the removal of chemical contaminants from water. All polyacetylene polyHIPEs demonstrated high efficiency in the adsorption of bisphenol A from water (up to 48%) and the subsequent photocatalytic degradation. Surprisingly, high adsorption capacity did not affect the photocatalytic efficiency (up to 58%). On the contrary, this dual function seems to be very promising, as some polyacetylene polyHIPEs almost completely removed bisphenol A from water (97%) through the adsorption-photooxidation mechanism. It also appears that the presence of polar functional side groups in the polyacetylene backbone improves the contact of the polyacetylene network with the aqueous bisphenol A solution, which can thus be more easily adsorbed and subsequently oxidized, compensating for the lower specific surface area of some networks, namely, 471 and 308 m2·g-1 in the case of 3-ethynylphenol- and 3-ethynylaniline-based polyacetylene polyHIPEs, respectively.

See more in PubMed

Fang W.; Peng Y.; Muir D.; Lin J.; Zhang X. A Critical Review of Synthetic Chemicals in Surface Waters of the US, the EU and China. Environ. Int. 2019, 131, 10499410.1016/j.envint.2019.104994. PubMed DOI

Dolan F.; Lamontagne J.; Link R.; Hejazi M.; Reed P.; Edmonds J. Evaluating the Economic Impact of Water Scarcity in a Changing World. Nat. Commun. 2021, 12 (1), 191510.1038/s41467-021-22194-0. PubMed DOI PMC

Yadav S.; Ibrar I.; Al-Juboori R. A.; Singh L.; Ganbat N.; Kazwini T.; Karbassiyazdi E.; Samal A. K.; Subbiah S.; Altaee A. Updated Review on Emerging Technologies for PFAS Contaminated Water Treatment. Chem. Eng. Res. Des. 2022, 182, 667–700. 10.1016/j.cherd.2022.04.009. DOI

Wu J.; Xu F.; Li S.; Ma P.; Zhang X.; Liu Q.; Fu R.; Wu D. Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv. Mater. 2019, 31 (4), 180292210.1002/adma.201802922. PubMed DOI

Waheed A.; Baig N.; Ullah N.; Falath W. Removal of Hazardous Dyes, Toxic Metal Ions and Organic Pollutants from Wastewater by Using Porous Hyper-Cross-Linked Polymeric Materials: A Review of Recent Advances. J. Environ. Manage. 2021, 287, 11236010.1016/j.jenvman.2021.112360. PubMed DOI

Plieva F. M.; Kirsebom H.; Mattiasson B. Preparation of Macroporous Cryostructurated Gel Monoliths, Their Characterization and Main Applications. J. Sep. Sci. 2011, 34 (16–17), 2164–2172. 10.1002/jssc.201100199. PubMed DOI

Türkmen D.; Bakhshpour M.; Akgönüllü S.; Aşır S.; Denizli A. Heavy Metal Ions Removal From Wastewater Using Cryogels: A Review. Front. Sustainability 2022, 3, 12638210.3389/frsus.2022.765592. DOI

Baimenov A.; Berillo D. A.; Poulopoulos S. G.; Inglezakis V. J. A Review of Cryogels Synthesis, Characterization and Applications on the Removal of Heavy Metals from Aqueous Solutions. Adv. Colloid Interface Sci. 2020, 276, 10208810.1016/j.cis.2019.102088. PubMed DOI

Loo S.-L.; Lim T.-T.; Krantz W. B.; Fane A. G.; Hu X. Potential Evaluation and Perspectives on Using Sponge-like Superabsorbent Cryogels for Onsite Water Treatment in Emergencies. Desalination Water Treat 2015, 53 (6), 1506–1515. 10.1080/19443994.2014.943064. DOI

Yang L.; Peng Y.; Luo X.; Dan Y.; Ye J.; Zhou Y.; Zou Z. Beyond C3N4 π-Conjugated Metal-Free Polymeric Semiconductors for Photocatalytic Chemical Transformations. Chem. Soc. Rev. 2021, 50 (3), 2147–2172. 10.1039/D0CS00445F. PubMed DOI

Xiao L.; Ling Y.; Alsbaiee A.; Li C.; Helbling D. E.; Dichtel W. R. β-Cyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations. J. Am. Chem. Soc. 2017, 139 (23), 7689–7692. 10.1021/jacs.7b02381. PubMed DOI

Ji W.; Xiao L.; Ling Y.; Ching C.; Matsumoto M.; Bisbey R. P.; Helbling D. E.; Dichtel W. R. Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. J. Am. Chem. Soc. 2018, 140 (40), 12677–12681. 10.1021/jacs.8b06958. PubMed DOI

Klemes M. J.; Ling Y.; Ching C.; Wu C.; Xiao L.; Helbling D. E.; Dichtel W. R. Reduction of a Tetrafluoroterephthalonitrile-β-Cyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. Angew. Chem., Int. Ed. 2019, 58 (35), 12049–12053. 10.1002/anie.201905142. PubMed DOI

Sapurina I. Yu.; Shishov M. A.; Ivanova V. T. Sorbents for Water Purification Based on Conjugated Polymers. Russ. Chem. Rev. 2020, 89 (10), 1115.10.1070/RCR4955. DOI

Su Y.; Wang F.; Wu S.; Fan Y.; Bai W.; Wang S.; Sun H.; Zhu Z.; Liang W.; Li A. Template-Assisted Preparation of Conjugated Microporous Polymers Membranes for Selective Separation. Sep. Purif. Technol. 2021, 259, 11820310.1016/j.seppur.2020.118203. DOI

Wang T.-X.; Liang H.-P.; Anito D. A.; Ding X.; Han B.-H. Emerging Applications of Porous Organic Polymers in Visible-Light Photocatalysis. J. Mater. Chem. 2020, 8 (15), 7003–7034. 10.1039/D0TA00364F. DOI

Zhang T.; Xing G.; Chen W.; Chen L. Porous Organic Polymers: A Promising Platform for Efficient Photocatalysis. Mater. Chem. Front. 2020, 4 (2), 332–353. 10.1039/C9QM00633H. DOI

Byun J.; Zhang K. A. I. Designing Conjugated Porous Polymers for Visible Light-Driven Photocatalytic Chemical Transformations. Mater. Horiz. 2020, 7 (1), 15–31. 10.1039/C9MH01071H. DOI

Chen W.; Chen P.; Zhang G.; Xing G.; Feng Y.; Yang Y.-W.; Chen L. Macrocycle-Derived Hierarchical Porous Organic Polymers: Synthesis and Applications. Chem. Soc. Rev. 2021, 50 (20), 11684–11714. 10.1039/D1CS00545F. PubMed DOI

Wang B.; Xie Z.; Li Y.; Yang Z.; Chen L. Dual-Functional Conjugated Nanoporous Polymers for Efficient Organic Pollutants Treatment in Water: A Synergistic Strategy of Adsorption and Photocatalysis. Macromolecules 2018, 51 (9), 3443–3449. 10.1021/acs.macromol.8b00669. DOI

Zhang K.; Vobecka Z.; Tauer K.; Antonietti M.; Vilela F. π-Conjugated PolyHIPEs as Highly Efficient and Reusable Heterogeneous Photosensitizers. Chem. Commun. 2013, 49 (95), 11158–11160. 10.1039/c3cc45597a. PubMed DOI

Slováková E.; Ješelnik M.; Žagar E.; Zedník J.; Sedláček J.; Kovačič S. Chain-Growth Insertion Polymerization of 1,3-Diethynylbenzene High Internal Phase Emulsions into Reactive π-Conjugated Foams. Macromolecules 2014, 47 (15), 4864–4869. 10.1021/ma501142d. DOI

Cameron N. R.; Sherrington D. C.. High Internal Phase Emulsions (HIPEs)—Structure, Properties and Use in Polymer Preparation. In Biopolymers Liquid Crystalline Polymers Phase Emulsion; Springer Berlin Heidelberg: Berlin, Heidelberg, 1996; pp 163–21410.1007/3-540-60484-7_4. DOI

Stubenrauch C.; Menner A.; Bismarck A.; Drenckhan W. Emulsion and Foam Templating—Promising Routes to Tailor-Made Porous Polymers. Angew. Chem., Int. Ed. 2018, 57 (32), 10024–10032. 10.1002/anie.201801466. PubMed DOI

Zhang T.; Sanguramath R. A.; Israel S.; Silverstein M. S. Emulsion Templating: Porous Polymers and Beyond. Macromolecules 2019, 52 (15), 5445–5479. 10.1021/acs.macromol.8b02576. DOI

Mork S. W.; Malone B. A.. Continuous Process for Polymerizing, Curing and Drying High Internal Phase Emulsions Background of the Invention. US6299808B1, 2001.

Barby D.; Haq Z.. Low Density Porous Cross-Linked Polymeric Materials and Their Preparation. EP0060138B1, 1986.

Kovačič S.; Silverstein M. S. Superabsorbent, High Porosity, PAMPS-Based Hydrogels through Emulsion Templating. Macromol. Rapid Commun. 2016, 37 (22), 1814–1819. 10.1002/marc.201600249. PubMed DOI

Kovačič S.; Drašinac N.; Pintar A.; Žagar E. Highly Porous Cationic Polyelectrolytes via Oil-in-Water Concentrated Emulsions: Synthesis and Adsorption Kinetic Study. Langmuir 2018, 34 (35), 10353–10362. 10.1021/acs.langmuir.8b01645. PubMed DOI

Cegłowski M.; Schroeder G.; Hoogenboom R. Porous Poly(2-Oxazoline)-Based Polymers for Removal and Quantification of Phenolic Compounds. Chem. Mater. 2020, 32 (15), 6425–6436. 10.1021/acs.chemmater.0c01559. DOI

Jurjevec S.; Žagar E.; Kovačič S. Functional Macroporous Amphoteric Polyelectrolyte Monoliths with Tunable Structures and Properties through Emulsion-Templated Synthesis. J. Colloid Interface Sci. 2020, 575, 480–488. 10.1016/j.jcis.2020.05.016. PubMed DOI

Tobin J. M.; McCabe T. J. D.; Prentice A. W.; Holzer S.; Lloyd G. O.; Paterson M. J.; Arrighi V.; Cormack P. A. G.; Vilela F. Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation. ACS Catal. 2017, 7 (7), 4602–4612. 10.1021/acscatal.7b00888. DOI

Wang Z. J.; Ghasimi S.; Landfester K.; Zhang K. A. I. A Conjugated Porous Poly-Benzobisthiadiazole Network for a Visible Light-Driven Photoredox Reaction. J. Mater. Chem. 2014, 2 (44), 18720–18724. 10.1039/C4TA03887H. DOI

Wang Z. J.; Ghasimi S.; Landfester K.; Zhang K. A. I. Highly Porous Conjugated Polymers for Selective Oxidation of Organic Sulfides under Visible Light. Chem. Commun. 2014, 50 (60), 8177–8180. 10.1039/C4CC02861A. PubMed DOI

Kotnik T.; Žerjav G.; Pintar A.; Žagar E.; Kovačič S. Highly Porous Poly(Arylene Cyano-Vinylene) Beads Derived through the Knoevenagel Condensation of the Oil-in-Oil-in-Oil Double Emulsion Templates. ACS Macro. Lett. 2021, 10 (10), 1248–1253. 10.1021/acsmacrolett.1c00457. PubMed DOI

Wang Z. J.; Landfester K.; Zhang K. A. I. Hierarchically Porous π-Conjugated PolyHIPE as a Heterogeneous Photoinitiator for Free Radical Polymerization under Visible Light. Polym. Chem. 2014, 5 (11), 3559–3562. 10.1039/C4PY00323C. DOI

Jurjevec S.; Žerjav G.; Pintar A.; Žagar E.; Kovačič S. Tunable Poly(Aryleneethynylene) Networks Prepared by Emulsion Templating for Visible-Light-Driven Photocatalysis. Catal. Today 2021, 361, 146–151. 10.1016/j.cattod.2020.01.049. DOI

Kotnik T.; Žerjav G.; Pintar A.; Žagar E.; Kovačič S. Azine- and Imine-Linked Conjugated PolyHIPEs through Schiff-Base Condensation Reaction. Polym. Chem. 2022, 13 (4), 474–478. 10.1039/D1PY01467F. DOI

Ballai G.; Kotnik T.; Finšgar M.; Pintar A.; Kónya Z.; Sápi A.; Kovačič S. Highly Porous Polymer Beads Coated with Nanometer-Thick Metal Oxide Films for Photocatalytic Oxidation of Bisphenol A. ACS Appl. Nano Mater. 2023, 6 (21), 20089–20098. 10.1021/acsanm.3c03891. PubMed DOI PMC

Shirakawa H.; Louis E. J.; MacDiarmid A. G.; Chiang C. K.; Heeger A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH). J. Chem. Soc. Chem. Commun. 1977, (No. 16), 578–580. 10.1039/C39770000578. DOI

Masuda T. Substituted Polyacetylenes: Synthesis, Properties, and Functions. Polym. Rev. 2017, 57 (1), 1–14. 10.1080/15583724.2016.1170701. DOI

Ke Z.; Abe S.; Ueno T.; Morokuma K. Rh-Catalyzed Polymerization of Phenylacetylene: Theoretical Studies of the Reaction Mechanism, Regioselectivity, and Stereoregularity. J. Am. Chem. Soc. 2011, 133 (20), 7926–7941. 10.1021/ja2012565. PubMed DOI

Kishimoto Y.; Eckerle P.; Miyatake T.; Kainosho M.; Ono A.; Ikariya T.; Noyori R. Well-Controlled Polymerization of Phenylacetylenes with Organorhodium(I) Complexes: Mechanism and Structure of the Polyenes. J. Am. Chem. Soc. 1999, 121 (51), 12035–12044. 10.1021/ja991903z. DOI

Trhlíková O.; Zedník J.; Balcar H.; Brus J.; Sedláček J. [Rh(Cycloolefin)(Acac)] Complexes as Catalysts of Polymerization of Aryl- and Alkylacetylenes: Influence of Cycloolefin Ligand and Reaction Conditions. J. Mol. Catal. 2013, 378, 57–66. 10.1016/j.molcata.2013.05.022. DOI

Balcar H.; Sedláček J.; Čejka J.; Vohlídal J. MCM-41-Immobilized [Rh(Cod)OCH3]2 Complex – A Hybrid Catalyst for the Polymerization of Phenylacetylene and Its Ring-Substituted Derivatives. Macromol. Rapid Commun. 2002, 23 (1), 32–37. 10.1002/1521-3927(20020101)23:1<32::AID-MARC32>3.0.CO;2-3. DOI

Sedláček J.; Balcar H. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers. Polym. Rev. 2017, 57 (1), 31–51. 10.1080/15583724.2016.1144207. DOI

Sekerová L.; Lhotka M.; Vyskočilová E.; Faukner T.; Slováková E.; Brus J.; Červený L.; Sedláček J. Hyper-Cross-Linked Polyacetylene-Type Microporous Networks Decorated with Terminal Ethynyl Groups as Heterogeneous Acid Catalysts for Acetalization and Esterification Reactions. Chem. - Eur. J. 2018, 24 (55), 14742–14749. 10.1002/chem.201802432. PubMed DOI

Havelková L.; Bashta B.; Vaňková M.; Zedník J.; Brus J.; Svoboda J.; Vagenknechtová A.; Sedláček J. Functionalized Hyper-Cross-Linked Porous Homopolymers of Ring-Substituted 1,3-Diethynylbenzenes and Their Physisorption Activity. Microporous Mesoporous Mater. 2024, 365, 11290810.1016/j.micromeso.2023.112908. DOI

Šorm D.; Bashta B.; Blahut J.; Císařová I.; Dolejšová Sekerová L.; Vyskočilová E.; Sedláček J. Porous Polymer Networks Cross-Linked by Novel Copper Schiff Base Complex: From Synthesis to Catalytic Activity. Eur. Polym. J. 2023, 184, 11177210.1016/j.eurpolymj.2022.111772. DOI

Makuła P.; Pacia M.; Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9 (23), 6814–6817. 10.1021/acs.jpclett.8b02892. PubMed DOI

Mark H. F.Encyclopedia of Polymer Science and Technology, Concise, 3rd ed.; John Wiley & Sons, 2013; Vol. 1.

Chen W.; Duan L.; Wang L.; Zhu D. Adsorption of Hydroxyl- and Amino-Substituted Aromatics to Carbon Nanotubes. Environ. Sci. Technol. 2008, 42 (18), 6862–6868. 10.1021/es8013612. PubMed DOI

Ji L.; Chen W.; Duan L.; Zhu D. Mechanisms for Strong Adsorption of Tetracycline to Carbon Nanotubes: A Comparative Study Using Activated Carbon and Graphite as Adsorbents. Environ. Sci. Technol. 2009, 43 (7), 2322–2327. 10.1021/es803268b. PubMed DOI

Sun Z.; Zhao L.; Liu C.; Zhen Y.; Ma J. Fast Adsorption of BPA with High Capacity Based on π-π Electron Donor-Acceptor and Hydrophobicity Mechanism Using an in-Situ Sp2 C Dominant N-Doped Carbon. J. Chem. Eng. 2020, 381, 12251010.1016/j.cej.2019.122510. DOI

Yi L.; Zuo L.; Wei C.; Fu H.; Qu X.; Zheng S.; Xu Z.; Guo Y.; Li H.; Zhu D. Enhanced Adsorption of Bisphenol A, Tylosin, and Tetracycline from Aqueous Solution to Nitrogen-Doped Multiwall Carbon Nanotubes via Cation-π and π-π Electron-Donor-Acceptor (EDA) Interactions. Sci. Total Environ. 2020, 719, 13738910.1016/j.scitotenv.2020.137389. PubMed DOI

Xu J.; Wang L.; Zhu Y. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 2012, 28 (22), 8418–8425. 10.1021/la301476p. PubMed DOI

Upoma B. P.; Yasmin S.; Ali Shaikh Md. A.; Jahan T.; Haque Md. A.; Moniruzzaman M.; Kabir M. H. A Fast Adsorption of Azithromycin on Waste-Product-Derived Graphene Oxide Induced by H-Bonding and Electrostatic Interactions. ACS Omega 2022, 7 (34), 29655–29665. 10.1021/acsomega.2c01919. PubMed DOI PMC

Ahmed I.; Hasan Z.; Lee G.; Lee H. J.; Jhung S. H. Contribution of Hydrogen Bonding to Liquid-Phase Adsorptive Removal of Hazardous Organics with Metal-Organic Framework-Based Materials. J. Chem. Eng. 2022, 430, 13259610.1016/j.cej.2021.132596. DOI

Guo S.; Zou Z.; Chen Y.; Long X.; Liu M.; Li X.; Tan J.; Chen R. Synergistic Effect of Hydrogen Bonding and π-π Interaction for Enhanced Adsorption of Rhodamine B from Water Using Corn Straw Biochar. Environ. Pollut. 2023, 320, 12106010.1016/j.envpol.2023.121060. PubMed DOI

Czili H.; Horváth A. Applicability of Coumarin for Detecting and Measuring Hydroxyl Radicals Generated by Photoexcitation of TiO2 Nanoparticles. Appl. Catal., B 2008, 81 (3), 295–302. 10.1016/j.apcatb.2008.01.001. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...