Semaglutide Treatment Effects on Liver Fat Content in Obese Subjects with Metabolic-Associated Steatotic Liver Disease (MASLD)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU20-01-00121
Ministry of Health of the Czech Republic
PubMed
39458050
PubMed Central
PMC11508983
DOI
10.3390/jcm13206100
PII: jcm13206100
Knihovny.cz E-resources
- Keywords
- GLP-1 receptor agonists, de novo lipogenesis, insulin resistance, liver fat, metabolic-dysfunction associated steatotic liver disease, nonalcoholic fatty liver disease, obesity, semaglutide,
- Publication type
- Journal Article MeSH
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) represents a major clinical complication of obesity. Methods: In this study, we used magnetic resonance (MR) methods to determine the effect of obesity treatment with semaglutide, a GLP-1 receptor agonist, on the liver fat content and selected metabolic variables. We investigated whether treatment would affect the acute response of liver fat to glucose and fructose administration and whether it would affect the fatty acid profile of VLDL-triglycerides. Sixteen obese non-diabetic men underwent a 16-week dietary intervention and 16-week treatment with subcutaneous semaglutide in a crossover design without a washout period. The order of the interventions was randomized. Results: After treatment, body weight of the subjects decreased by 5% and liver fat by a third, whereas dietary intervention had no impact on these parameters. The decrease in liver fat with semaglutide did not correlate with changes in body weight and other measures of adiposity and was unrelated to improved insulin sensitivity. Conclusions: The proportion of palmitic and palmitoleic acids in VLDL-triglycerides decreased after treatment, suggesting that the beneficial effects of semaglutide on liver fat are mediated by the suppression of de novo lipogenesis.
Department of Physiology Faculty of Science Charles University 128 44 Prague Czech Republic
Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
See more in PubMed
Younossi Z.M., Golabi P., Paik J.M., Henry A., Van Dongen C., Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology. 2023;77:1335–1347. doi: 10.1097/HEP.0000000000000004. PubMed DOI PMC
Amini-Salehi E., Letafatkar N., Norouzi N., Joukar F., Habibi A., Javid M., Sattari N., Khorasani M., Farahmand A., Tavakoli S., et al. Global prevalence of nonalcoholic fatty liver disease: An updated meta-analysis on 78 million population over 38 countries. Arch. Med. Res. 2024;55:103043. doi: 10.1016/j.arcmed.2024.103043. PubMed DOI
Quek J., Chan K.E., Wong Z.Y., Tan C., Tan B., Lim W.H., Tan D.J.H., Tang A.S.P., Tay P., Xiao J., et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2023;8:20–30. doi: 10.1016/S2468-1253(22)00317-X. PubMed DOI
Paklar N., Mijic M., Filipec-Kanizaj T. The Outcomes of Liver Transplantation in Severe Metabolic Dysfunction-Associated Steatotic Liver Disease Patients. Biomedicines. 2023;11:3096. doi: 10.3390/biomedicines11113096. PubMed DOI PMC
Bandyopadhyay S., Das S., Samajdar S.S., Joshi S.R. Role of semaglutide in the treatment of nonalcoholic fatty liver disease or non-alcoholic steatohepatitis: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2023;17:102849. doi: 10.1016/j.dsx.2023.102849. PubMed DOI
Zhu K., Kakkar R., Chahal D., Yoshida E.M., Hussaini T. Efficacy and safety of semaglutide in non-alcoholic fatty liver disease. World J. Gastroenterol. 2023;29:5327–5338. doi: 10.3748/wjg.v29.i37.5327. PubMed DOI PMC
Mantovani A., Petracca G., Beatrice G., Csermely A., Lonardo A., Targher G. Glucagon-Like Peptide-1 Receptor Agonists for Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: An Updated Meta-Analysis of Randomized Controlled Trials. Metabolites. 2021;11:73. doi: 10.3390/metabo11020073. PubMed DOI PMC
Nevola R., Epifani R., Imbriani S., Tortorella G., Aprea C., Galiero R., Rinaldi L., Marfella R., Sasso F.C. GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2023;24:1703. doi: 10.3390/ijms24021703. PubMed DOI PMC
Dusilova T., Kovar J., Drobny M., Sedivy P., Dezortova M., Poledne R., Zemankova K., Hajek M. Different acute effects of fructose and glucose administration on hepatic fat content. Am. J. Clin. Nutr. 2019;109:1519–1526. doi: 10.1093/ajcn/nqy386. PubMed DOI
Kovar J., Dusilova T., Sedivy P., Bruha R., Gottfriedova H., Pavlikova P., Pitha J., Smid V., Drobny M., Dezortova M., et al. Acute responses of hepatic fat content to consuming fat, glucose and fructose alone and in combination in non-obese non-diabetic individuals with non-alcoholic fatty liver disease. J. Physiol. Pharmacol. 2021;72:45–53. doi: 10.26402/jpp.2021.1.05. PubMed DOI
Lambert J.E., Ramos-Roman M.A., Browning J.D., Parks E.J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:726–735. doi: 10.1053/j.gastro.2013.11.049. PubMed DOI PMC
Sedivy P., Dezortova M., Burian M., Dusilova T., Kovar J., Hajek M. Comparison of accuracy of magnetic resonance spectroscopic and imaging techniques for the liver steatosis assessment. Chem. Listy. 2021;115:46–53.
Longo R., Pollesello P., Ricci C., Masutti F., Kvam B.J., Bercich L., Croce L.S., Grigolato P., Paoletti S., de Bernard B., et al. Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J. Magn. Reson. Imaging. 1995;5:281–285. doi: 10.1002/jmri.1880050311. PubMed DOI
Havel R.J., Eder H.A., Bragdon J.H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Investig. 1955;34:1345–1353. doi: 10.1172/JCI103182. PubMed DOI PMC
Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Eder K. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Appl. 1995;671:113–131. doi: 10.1016/0378-4347(95)00142-6. PubMed DOI
Hudgins L.C., Hellerstein M., Seidman C., Neese R., Diakun J., Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Investig. 1996;97:2081–2091. doi: 10.1172/JCI118645. PubMed DOI PMC
Loomba R., Abdelmalek M.F., Armstrong M.J., Jara M., Kjaer M.S., Krarup N., Lawitz E., Ratziu V., Sanyal A.J., Schattenberg J.M., et al. Semaglutide 2.4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: A randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 2023;8:511–522. doi: 10.1016/S2468-1253(23)00068-7. PubMed DOI PMC
Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., Parks E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 2005;115:1343–1351. doi: 10.1172/JCI23621. PubMed DOI PMC
Lee J.J., Lambert J.E., Hovhannisyan Y., Ramos-Roman M.A., Trombold J.R., Wagner D.A., Parks E.J. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 2015;101:34–43. doi: 10.3945/ajcn.114.092262. PubMed DOI PMC
Taher J., Baker C.L., Cuizon C., Masoudpour H., Zhang R., Farr S., Naples M., Bourdon C., Pausova Z., Adeli K. GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance. Mol. Metab. 2014;3:823–833. doi: 10.1016/j.molmet.2014.09.005. PubMed DOI PMC
Soto-Catalan M., Opazo-Rios L., Quiceno H., Lazaro I., Moreno J.A., Gomez-Guerrero C., Egido J., Mas-Fontao S. Semaglutide Improves Liver Steatosis and De Novo Lipogenesis Markers in Obese and Type-2-Diabetic Mice with Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int. J. Mol. Sci. 2024;25:2961. doi: 10.3390/ijms25052961. PubMed DOI PMC
Feng J.N., Jin T. Hepatic function of glucagon-like peptide-1 and its based diabetes drugs. Med. Rev. (2021) 2024;4:312–325. doi: 10.1515/mr-2024-0018. PubMed DOI PMC
Xu A., Wang Y., Keshaw H., Xu L.Y., Lam K.S., Cooper G.J. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Investig. 2003;112:91–100. doi: 10.1172/JCI200317797. PubMed DOI PMC
van Bloemendaal L., RG I.J., Ten Kulve J.S., Barkhof F., Konrad R.J., Drent M.L., Veltman D.J., Diamant M. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–4196. doi: 10.2337/db14-0849. PubMed DOI
Blundell J., Finlayson G., Axelsen M., Flint A., Gibbons C., Kvist T., Hjerpsted J.B. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 2017;19:1242–1251. doi: 10.1111/dom.12932. PubMed DOI PMC
Adiels M., Taskinen M.R., Packard C., Caslake M.J., Soro-Paavonen A., Westerbacka J., Vehkavaara S., Hakkinen A., Olofsson S.O., Yki-Jarvinen H., et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia. 2006;49:755–765. doi: 10.1007/s00125-005-0125-z. PubMed DOI
Nutrient-Induced Changes of Liver Fat Content in Humans