Cadmium-Induced Hepatotoxicity in Mice - Prophylactic Supplementation of Quercetin Exerts Hepatoprotective Effect by Modulating PI3K/Akt/NF-kappaB Signaling Pathway
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39530906
PubMed Central
PMC11629949
DOI
10.33549/physiolres.935252
PII: 935252
Knihovny.cz E-zdroje
- MeSH
- antioxidancia * farmakologie MeSH
- fosfatidylinositol-3-kinasy * metabolismus MeSH
- játra účinky léků patologie metabolismus MeSH
- kadmium * toxicita MeSH
- lékové postižení jater * prevence a kontrola metabolismus patologie MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- NF-kappa B * metabolismus MeSH
- oxidační stres účinky léků MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- quercetin * farmakologie terapeutické užití MeSH
- signální transdukce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- fosfatidylinositol-3-kinasy * MeSH
- kadmium * MeSH
- NF-kappa B * MeSH
- protoonkogenní proteiny c-akt * MeSH
- quercetin * MeSH
This current study seeks to examine the pre-protective function of Quercetin in Cadmium (Cd)-induced liver damage, along with its modulation of the PI3K/Akt/NF-kappaB signaling pathway. A total of 60 male C57BL/6J mice were randomly assigned to four groups: control (C), quercetin (Q, 100 mg/kg/day), Cd (Cd, 2.5 mg/kg/day), and quercetin and Cd (Q+Cd). Before receiving Cd treatment, quercetin was administered intragastrically for 4 weeks. In the present study, liver markers, oxidative stress parameters, pro-inflammatory cytokines, liver histopathology, apoptotic markers and PI3K/Akt/NF-kappaB signaling molecules were examined. We observed that the body weight of the Cd-treated mice dramatically rise after 4 weeks of quercetin pre-administration, and the Cd concentration was significantly decreased. Liver function markers like alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were significantly reduced in quercetin treatment in Cd-induced mice. Additionally, we observed that quercetin reduced Cd-mediated liver injury in mice by assessing the level of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH) concentrations and the histological alterations. By monitoring tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1beta (IL-1beta), quercetin successfully reduced the inflammatory cytokines that the Cd metal caused in the liver. Additionally, in the liver tissues of Cd-mediated, quercetin could enhance the expression of Bcl-2 and decrease the expression of p-Akt, p-PI3K, Bax, Caspase-9, Caspase-3, NF-kappaB. In conclusion, quercetin protects against Cd induced liver injury via several pathways, including oxidative stress, inflammation and apoptosis, and its protective effect correlates with antioxidant activity.
Zobrazit více v PubMed
Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020;17:3782. doi: 10.3390/ijerph17113782. PubMed DOI PMC
Satarug S, Garrett SH, Sens MA, Sens DA. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect. 2010;118:182–190. doi: 10.1289/ehp.0901234. PubMed DOI PMC
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133–164. doi: 10.1007/978-3-7643-8340-4_6. PubMed DOI PMC
Gu Q, Wang C, Xiao Q, Chen Z, Han Y. Melatonin Confers Plant Cadmium Tolerance: An Update. Int J Mol Sci. 2021;22:11704. doi: 10.3390/ijms222111704. PubMed DOI PMC
Zou H, Wang T, Yuan J, Sun J, Yuan Y, Gu J, Liu X, Bian J, Liu Z. Cadmium-induced cytotoxicity in mouse liver cells is associated with the disruption of autophagic flux via inhibiting the fusion of autophagosomes and lysosomes. Toxicol Lett. 2020;321:32–43. doi: 10.1016/j.toxlet.2019.12.019. PubMed DOI
Okoye CN, MacDonald-Jay N, Kamunde C. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption. Aquat Toxicol. 2019;214:105264. doi: 10.1016/j.aquatox.2019.105264. PubMed DOI
Liu L, Tao R, Huang J, He X, Qu L, Jin Y, Zhang S, Fu Z. Hepatic oxidative stress and inflammatory responses with cadmium exposure in male mice. Environ Toxicol Pharmacol. 2015;39:229–236. doi: 10.1016/j.etap.2014.11.029. PubMed DOI
Di Petrillo A, Orrù G, Fais A, Fantini MC. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res. 2022;36:266–278. doi: 10.1002/ptr.7309. PubMed DOI PMC
Alizadeh SR, Ebrahimzadeh MA. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur J Med Chem. 2022;229:114068. doi: 10.1016/j.ejmech.2021.114068. PubMed DOI
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, Lampen A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol Nutr Food Res. 2018;62:201700447. doi: 10.1002/mnfr.201700447. PubMed DOI
Wu L, Zhang Q, Mo W, Feng J, Li S, Li J, Liu T, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci Rep. 2017;7:9289. doi: 10.1038/s41598-017-09673-5. PubMed DOI PMC
Perez-Vizcaino F, Duarte J, Andriantsitohaina R. Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic Res. 2006;40:1054–1065. doi: 10.1080/10715760600823128. PubMed DOI
Luo M, Tian R, Lu N. Quercetin Inhibited Endothelial Dysfunction and Atherosclerosis in Apolipoprotein E-Deficient Mice: Critical Roles for NADPH Oxidase and Heme Oxygenase-1. J Agric Food Chem. 2020;68:10875–10883. doi: 10.1021/acs.jafc.0c03907. PubMed DOI
Shen P, Lin W, Deng X, Ba X, Han L, Chen Z, Qin K, Huang Y, Tu S. Potential Implications of Quercetin in Autoimmune Diseases. Front Immunol. 2021;12:689044. doi: 10.3389/fimmu.2021.689044. PubMed DOI PMC
Bedir F, Kocatürk H, Yapanoğlu T, Gürsul C, Arslan R, Mammadov R, Çoban A, et al. Protective effect of taxifolin against prooxidant and proinflammatory kidney damage associated with acrylamide in rats. Biomed Pharmacother. 2021;139:111660. doi: 10.1016/j.biopha.2021.111660. PubMed DOI
Chen T, Zhang X, Zhu G, Liu H, Chen J, Wang Y, He X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore) 2020;99:e22241. doi: 10.1097/MD.0000000000022241. PubMed DOI PMC
Liu J, Han X, Zhang T, Tian K, Li Z, Luo F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol. 2023;16:116. doi: 10.1186/s13045-023-01512-7. PubMed DOI PMC
Ding Z, Li Y, Tang Z, Song X, Jing F, Wu H, Lu B. Role of gambogenic acid in regulating PI3K/Akt/NF-kβ signaling pathways in rat model of acute hepatotoxicity. Biosci Biotechnol Biochem. 2021;85:520–527. doi: 10.1093/bbb/zbaa039. PubMed DOI
Wang M, Zhang J, Gong N. Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: a narrative review. Ann Palliat Med. 2022;11:806–817. doi: 10.21037/apm-21-3286. PubMed DOI
Wang J, Ding L, Wang K, Huang R, Yu W, Yan B, Wang H, Zhang C, Yang Z, Liu Z. Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin. Ecotoxicol Environ Saf. 2022;241:113772. doi: 10.1016/j.ecoenv.2022.113772. PubMed DOI
Vicente-Sánchez C, Egido J, Sánchez-González PD, Pérez-Barriocanal F, López-Novoa JM, Morales AI. Effect of the flavonoid quercetin on cadmium-induced hepatotoxicity. Food Chem Toxicol. 2008;46:2279–2287. doi: 10.1016/j.fct.2008.03.009. PubMed DOI
Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014:655–658. doi: 10.1101/pdb.prot073411. PubMed DOI
Cao L-J, Yan M, Ma Y-X, Zhang B-K, Fang P-F, Xiang D-X, Li Z-H, et al. Isoliquiritigenin protects against triptolide-induced hepatotoxicity in mice through Nrf2 activation. Pharmazie. 2016;71:394–397. doi: 10.1155/2016/8912184. PubMed DOI
Liu Z, Wang J, Zhang Y, Wu D, Li S, Jiang A, Du C, Xie G. Pterostilbene Exerts Hepatoprotective Effects through Ameliorating LPS/D-Gal-Induced Acute Liver Injury in Mice. Inflammation. 2021;44:526–535. doi: 10.1007/s10753-020-01349-z. PubMed DOI
Yang Z, He Y, Wang H, Zhang Q. Protective effect of melatonin against chronic cadmium-induced hepatotoxicity by suppressing oxidative stress, inflammation, and apoptosis in mice. Ecotoxicol Environ Saf. 2021;228:112947. doi: 10.1016/j.ecoenv.2021.112947. PubMed DOI
Wan XM, Chen J, Wang M, Zheng C, Zhou XL. Puerarin attenuates cadmium-induced hepatic lipid metabolism disorder by inhibiting oxidative stress and inflammation in mice. J Inorg Biochem. 2021;222:111521. doi: 10.1016/j.jinorgbio.2021.111521. PubMed DOI
Contreras-Zentella ML, Hernández-Muñoz R. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress? Oxid Med Cell Longev. 2016;2016:3529149. doi: 10.1155/2016/3529149. PubMed DOI PMC
Ojo OA, Ajiboye BO, Oyinloye BE, Ojo AB, Olarewaju OI. Protective effect of Irvingia gabonensis stem bark extract on cadmium-induced nephrotoxicity in rats. Interdiscip Toxicol. 2014;7:208–214. doi: 10.2478/intox-2014-0030. PubMed DOI PMC
Alrushaid S, Sayre CL, Yáñez JA, Forrest ML, Senadheera SN, Burczynski FJ, Löbenberg R, Davies NM. Pharmacokinetic and Toxicodynamic Characterization of a Novel Doxorubicin Derivative. Pharmaceutics. 2017;9:35. doi: 10.3390/pharmaceutics9030035. PubMed DOI PMC
Amamou F, Nemmiche S, Meziane RK, Didi A, Yazit SM, Chabane-Sari D. Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats. Food Chem Toxicol. 2015;78:177–184. doi: 10.1016/j.fct.2015.01.001. PubMed DOI
Kumar A, Siddiqi NJ, Alrashood ST, Khan HA, Dubey A, Sharma B. Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomed Pharmacother. 2021;139:111588. doi: 10.1016/j.biopha.2021.111588. PubMed DOI
Liu C, Zhu Y, Lu Z, Guo W, Tumen B, He Y, Chen C, et al. Cadmium Induces Acute Liver Injury by Inhibiting Nrf2 and the Role of NF-κB, NLRP3, and MAPKs Signaling Pathway. Int J Environ Res Public Health. 2019;17:138. doi: 10.3390/ijerph17010138. PubMed DOI PMC
Owumi SE, Olayiwola YO, Alao GE, Gbadegesin MA, Odunola OA. Cadmium and nickel co-exposure exacerbates genotoxicity and not oxido-inflammatory stress in liver and kidney of rats: Protective role of omega-3 fatty acid. Environ Toxicol. 2020;35:231–241. doi: 10.1002/tox.22860. PubMed DOI
Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, Sergio F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52:751–762. doi: 10.1080/10715762.2018.1468564. PubMed DOI
Tu H, Ma D, Luo Y, Tang S, Li Y, Chen G, Wang L, et al. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioengineered. 2021;12:6538–6558. doi: 10.1080/21655979.2021.1973877. PubMed DOI PMC
Seif M, Deabes M, El-Askary A, El-Kott AF, Albadrani GM, Seif A, Wang Z. Ephedra sinica mitigates hepatic oxidative stress and inflammation via suppressing the TLR4/MyD88/NF-κB pathway in fipronil-treated rats. Environ Sci Pollut Res Int. 2021;28:62943–62958. doi: 10.1007/s11356-021-15142-4. PubMed DOI
Barroso MF, Luna MA, Moyano F, Delerue-Matos C, Correa NM, Molina PG. Study of lipid peroxidation and ascorbic acid protective role in large unilamellar vesicles from a new electrochemical performance. Bioelectrochemistry. 2018;120:120–126. doi: 10.1016/j.bioelechem.2017.12.003. PubMed DOI
Liu CM, Ma JQ, Xie WR, Liu SS, Feng ZJ, Zheng GH, Wang AM. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway. Food Chem Toxicol. 2015;82:19–26. doi: 10.1016/j.fct.2015.05.001. PubMed DOI
Cai P, Zhu Q, Cao Q, Bai Y, Zou H, Gu J, Yuan Y, et al. Quercetin and Allicin Can Alleviate the Hepatotoxicity of Lead (Pb) through the PI3K Signaling Pathway. J Agric Food Chem. 2021;69:9451–9460. doi: 10.1021/acs.jafc.1c03794. PubMed DOI
Ge J, Guo K, Zhang C, Talukder M, Lv MW, Li JY, Li JL. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. Sci Total Environ. 2021;773:145442. doi: 10.1016/j.scitotenv.2021.145442. PubMed DOI
Li Z, Chi H, Zhu W, Yang G, Song J, Mo L, Zhang Y, et al. Cadmium induces renal inflammation by activating the NLRP3 inflammasome through ROS/MAPK/NF-κB pathway in vitro and in vivo. Arch Toxicol. 2021;95:3497–3513. doi: 10.1007/s00204-021-03157-2. PubMed DOI
Weng CJ, Chen MJ, Yeh CT, Yen GC. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. N Biotechnol. 2011;28:767–777. doi: 10.1016/j.nbt.2011.05.003. PubMed DOI
Hu Q, Zhang W, Wu Z, Tian X, Xiang J, Li L, Li Z, et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol Res. 2021;165:105444. doi: 10.1016/j.phrs.2021.105444. PubMed DOI
Lim JY, Lee JH, Yun DH, Lee YM, Kim DK. Inhibitory effects of nodakenin on inflammation and cell death in lipopolysaccharide-induced liver injury mice. Phytomedicine. 2021;81:153411. doi: 10.1016/j.phymed.2020.153411. PubMed DOI
Hailan WAQ, Abou-Tarboush FM, Al-Anazi KM, Ahmad A, Qasem A, Farah MA. Gemcitabine induced cytotoxicity, DNA damage and hepatic injury in laboratory mice. Drug Chem Toxicol. 2020;43:158–164. doi: 10.1080/01480545.2018.1504957. PubMed DOI
Rana SV. Metals and apoptosis: recent developments. J Trace Elem Med Biol. 2008;22:262–284. doi: 10.1016/j.jtemb.2008.08.002. PubMed DOI
Zhou YD, Hou JG, Liu W, Ren S, Wang YP, Zhang R, Chen C, et al. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis. Int Immunopharmacol. 2018;59:21–30. doi: 10.1016/j.intimp.2018.03.030. PubMed DOI