Experimental Lung Transplantation Related With HIF-1, VEGF, ROS. Assessment of HIF-1alpha, VEGF, and Reactive Oxygen Species After Competitive Blockade of Chetomin for Lung Transplantation in Rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39560191
PubMed Central
PMC11629959
DOI
10.33549/physiolres.935385
PII: 935385
Knihovny.cz E-zdroje
- MeSH
- disulfidy MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa * metabolismus MeSH
- indolové alkaloidy MeSH
- krysa rodu Rattus MeSH
- plíce metabolismus účinky léků MeSH
- potkani Sprague-Dawley MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- transplantace plic * MeSH
- vaskulární endoteliální růstový faktor A * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chetomin MeSH Prohlížeč
- disulfidy MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa * MeSH
- Hif1a protein, rat MeSH Prohlížeč
- indolové alkaloidy MeSH
- reaktivní formy kyslíku * MeSH
- vascular endothelial growth factor A, rat MeSH Prohlížeč
- vaskulární endoteliální růstový faktor A * MeSH
UNLABELLED: Primary graft failure occurs 15 to 30 % of the time after transplantation. Although there have been improvements in preserving the lungs in good condition, there have not been studies on the regulation of transcription factors. METHODS: We carried out an experimental study involving lung transplantation to indirectly evaluate reactive oxygen species (ROS) production and VEGF expression by competitive blockade of HIF-1alpha with chetomin. There were 5 groups: Group-1: Lung blocks were perfused with 0.9 % SSF, immediately harvested, and preserved. Group-2 (I-T): Immediate transplantation and then reperfusion for 1 h. Group-3 (I-R): Lung blocks were harvested and preserved in LPD solution for 6 h and reperfused for 1 h. Group-4 (DMSO): Lung blocks were treated for 4 h with DMSO, preserved for 6 h and transplanted to a receptor treated with DMSO. Group-5 (chetomin): Lung blocks were treated for 4 h with chetomin, preserved for 6 h and transplanted to a receptor treated with chetomin. ROS, mRNA, and protein levels of HIF-1alpha and EG-VEGF were determined. RESULTS: The DMSO and chetomin groups had significantly lower ROS levels. Compared with those in the I-R group, the chetomin group exhibited the lowest level of HIF-1alpha. CONCLUSIONS: Addition of chetomin to the donor and the receptor results in a significant reduction in HIF-1A, VEGF and ROS.
Zobrazit více v PubMed
Paulus P, Holfeld J, Scheller B, Zacharowski K, Reissig C, Tybl E, Ockelman PA, Urbschat A. VEGF-A blockade reduces reperfusion edema but favors arterial thromboembolism in a rat model of orthotopic lung transplantation. Transplantation. 2014;97:908–916. doi: 10.1097/TP.0000000000000056. PubMed DOI
Chatterjee S, Nieman GF, Christie JD, Fisher AB. Shear stress-related mechanosignaling with lung ischemia: lessons from basic research can inform lung transplantation. Am J Physiol Lung Cell Mol Physiol. 2014;307:L668–L680. doi: 10.1152/ajplung.00198.2014. PubMed DOI PMC
Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12:5–23. doi: 10.1038/cmi.2014.89. PubMed DOI PMC
Malczyk M, Veith C, Schermuly RT, Gudermann T, Dietrich A, Sommer N, Weissmann N, Pak O. NADPH oxidases-do they play a role in TRPC regulation under hypoxia? Pflugers Arch. 2016;468:23–41. doi: 10.1007/s00424-015-1731-3. PubMed DOI
Akhtar MZ, Sutherland AI, Huang H, Ploeg RJ, Pugh CW. The role of hypoxia-inducible factors in organ donation and transplantation: the current perspective and future opportunities. Am J Transplant. 2014;14:1481–1487. doi: 10.1111/ajt.12737. PubMed DOI
Weyker PD, Webb CA, Kiamanesh D, Flynn BC. Lung ischemia reperfusion injury: a bench-to-bedside review. Semin Cardiothorac Vasc Anesth. 2013;17:28–43. doi: 10.1177/1089253212458329. PubMed DOI
den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol. 2010;299:H1283–H1299. doi: 10.1152/ajpheart.00251.2010. PubMed DOI
Laubach VE, Sharma AK. Mechanisms of lung ischemia-reperfusion injury. Curr Opin Organ Transplant. 2016;21:246–252. doi: 10.1097/MOT.0000000000000304. PubMed DOI PMC
Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012;37:364–372. doi: 10.1016/j.tibs.2012.06.004. PubMed DOI PMC
Shimoda LA, Semenza GL. HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med. 2011;183:152–156. doi: 10.1164/rccm.201009-1393PP. PubMed DOI PMC
Fraga A, Ribeiro R, Medeiros R. Tumor hypoxia: the role of HIF. (Article in Spanish) Actas Urol Esp. 2009;33:941–951. doi: 10.1016/S0210-4806(09)72891-8. PubMed DOI
Caramelo C, Peña Deudero JJ, Castilla A, Justo S, De Solis AJ, Neria F, Peñate S, Gonzalez-Pacheco FR. Response to hypoxia. A systemic mechanism based on the control of gene expression. (Article in Spanish) Medicina (B Aires) 2006;66:155–164. PubMed
Heikal L, Ghezzi P, Mengozzi M, Ferns G. Assessment of HIF-1α expression and release following endothelial injury in-vitro and in-vivo. Mol Med. 2018;24:22. doi: 10.1186/s10020-018-0026-5. PubMed DOI PMC
Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B, Moreaux J. Chetomin, targeting HIF-1α/p300 complex, exhibits antitumour activity in multiple myeloma. Br J Cancer. 2016;114:519–523. doi: 10.1038/bjc.2016.20. PubMed DOI PMC
Balogh E, Tóth A, Méhes G, Trencsényi G, Paragh G, Jeney V. Hypoxia Triggers Osteochondrogenic Differentiation of Vascular Smooth Muscle Cells in an HIF-1 (Hypoxia-Inducible Factor 1)-Dependent and Reactive Oxygen Species-Dependent Manner. Arterioscler Thromb Vasc Biol. 2019;39:1088–1099. doi: 10.1161/ATVBAHA.119.312509. PubMed DOI
Santana Rodríguez N, Martín Barrasa JL, López García A, Rodríguez Suárez P, Ponce González M, Freixinet Gilart J. Lung transplantation in rats: a viable experimental model. (Article in Spanish) Arch Bronconeumol. 2004;40:438–442. doi: 10.1016/S0300-2896(04)75568-4. PubMed DOI
Rajab TK. Techniques for lung transplantation in the rat. Exp Lung Res. 2019;45:267–274. doi: 10.1080/01902148.2019.1675806. PubMed DOI
Bravo-Reyna CC, Torres-Villalobos G, Aguilar-Blas N, Frías-Guillén J, Guerra-Mora JR. Comparative Study of Capillary Filtration Coefficient (Kfc) Determination by a Manual and Automatic Perfusion System. Step by Step Technique Review. Physiol Res. 2019;68:901–908. doi: 10.33549/physiolres.933971. PubMed DOI
Bravo-Reyna CC, López-Gómez O, Zentella A, Guerra-Mora JR, Torres-Villalobos G, Perales-Caldera E, Frías-Guillén J, Granados J. Comparison of the Effects of Endotracheal Intubation of Wistar Rats Using the Conventional Technique vs. a New Modified Technique Using a 3D Mouth-Piece. J Invest Surg. 2021;34:979–983. doi: 10.1080/08941939.2020.1736217. PubMed DOI
Guerra-Mora JR, Perales-Caldera E, Aguilar-León D, Nava-Sanchez C, Díaz-Cruz A, Díaz-Martínez NE, Santillán-Doherty P, et al. Effects of Sildenafil and Tadalafil on Edema and Reactive Oxygen Species Production in an Experimental Model of Lung Ischemia-Reperfusion Injury. Transplant Proc. 2017;49:1461–1466. doi: 10.1016/j.transproceed.2017.03.089. PubMed DOI
Lu H, Li Y, Shu M, Tang J, Huang Y, Zhou Y, Liang Y, Yan G. Hypoxia-inducible factor-1alpha blocks differentiation of malignant gliomas. FEBS J. 2009;276:7291–7304. doi: 10.1111/j.1742-4658.2009.07441.x. PubMed DOI
Zhou Z, Zhu X, Chen J, Yang S, Sun R, Yang G. The interaction between Toll-like receptor 4 signaling pathway and hypoxia-inducible factor 1α in lung ischemia-reperfusion injury. J Surg Res. 2014;188:290–297. doi: 10.1016/j.jss.2013.11.1086. PubMed DOI
Zepeda AB, Pessoa A, Jr, Castillo RL, Figueroa CA, Pulgar VM, Farías JG. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS. Cell Biochem Funct. 2013;31:451–459. doi: 10.1002/cbf.2985. PubMed DOI
Forgiarini LA, Jr, Grün G, Kretzmann NA, de Muñoz GA, de Almeida A, Forgiarini LF, Andrade CF. When is injury potentially reversible in a lung ischemia-reperfusion model? J Surg Res. 2013;179:168–174. doi: 10.1016/j.jss.2012.08.026. PubMed DOI
Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2005;24:1454–1459. doi: 10.1016/j.healun.2004.11.049. PubMed DOI
Bos S, Vos R, Van Raemdonck DE, Verleden GM. Survival in adult lung transplantation: where are we in 2020? Curr Opin Organ Transplant. 2020;25:268–273. doi: 10.1097/MOT.0000000000000753. PubMed DOI
Gielis JF, Beckers PAJ, Briedé JJ, Cos P, Van Schil PE. Oxidative and nitrosative stress during pulmonary ischemia-reperfusion injury: from the lab to the OR. Ann Transl Med. 2017;5:131. doi: 10.21037/atm.2017.03.32. PubMed DOI PMC
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) Adv Exp Med Biol. 2017;967:105–137. doi: 10.1007/978-3-319-63245-2_8. PubMed DOI PMC
Boukhenouna S, Wilson MA, Bahmed K, Kosmider B. Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease. Oxid Med Cell Longev. 2018;2018:5730395. doi: 10.1155/2018/5730395. PubMed DOI PMC