Heterozygous BTNL8 variants in individuals with multisystem inflammatory syndrome in children (MIS-C)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MR/S032304/1
UK Research and Innovation
Francis Crick Institute
UL1 TR001866
NCATS NIH HHS - United States
108439/Z/15/Z
Wellcome Trust - United Kingdom
FC001003
Cancer Research UK - United Kingdom
Imagine Institute
101057100
H2020 UNDINE HORIZON-HLTH-2021-DISEASE-04
JPB Foundation
Fisher Center for Alzheimer's Research Foundation
202131-32-33
Fundació La Marató de TV3
EC-GA no. 279185
European Union's Seventh Framework Programme
R33HD105590
National Institute for Child Heath and Development
EQU201903007798
French Foundation for Medical Research
PA0873
NIHR Imperial Biomedical Research Centre
Rockefeller University
EQU202103012670
Fondation pour la recherche Medicale
Imperial College London
58READIE
Medical Research Council - United Kingdom
Meyer Foundation
FC001003
Arthritis Research UK - United Kingdom
ES/M001660/1
Economic and Social Research Council
Generalitat de Catalunya
Battersea & Bowery Advisory Group
R01AI163029
NIH HHS - United States
Grandir - Fonds de solidarité pour l'enfance
848196
European Union's Horizon 2020 research and innovation
2021SGR00899
Agencia de Gestión de Ayudas Universitarias y de Investigación
Institut National de la Santé et de la Recherche Médicale
R33 HD105590
NICHD NIH HHS - United States
R21 AI160576
NIAID NIH HHS - United States
French Ministry of Higher Education, Research, and Innovation
Howard Hughes Medical Institute - United States
Square Foundation
Fondation du Souffle
SCOR Corporate Foundation for Science
St. Giles Foundation
Wellcome Trust - United Kingdom
MR/N01104X/1 2018-2020
Economic and Social Research Council
General Atlantic Foundation
R01 AI163029
NIAID NIH HHS - United States
FC001003
Wellcome Trust - United Kingdom
ACCI20-759
CIBERER
ANR-10-IAHU-01
French National Research Agency
PubMed
39576310
PubMed Central
PMC11586762
DOI
10.1084/jem.20240699
PII: 277108
Knihovny.cz E-zdroje
- MeSH
- butyrofiliny * genetika metabolismus MeSH
- COVID-19 * genetika komplikace imunologie virologie MeSH
- dítě MeSH
- genetická predispozice k nemoci MeSH
- heterozygot MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- SARS-CoV-2 * MeSH
- syndrom systémové zánětlivé reakce * genetika MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- butyrofiliny * MeSH
Multisystem inflammatory syndrome in children (MIS-C) is a rare condition following SARS-CoV-2 infection associated with intestinal manifestations. Genetic predisposition, including inborn errors of the OAS-RNAseL pathway, has been reported. We sequenced 154 MIS-C patients and utilized a novel statistical framework of gene burden analysis, "burdenMC," which identified an enrichment for rare predicted-deleterious variants in BTNL8 (OR = 4.2, 95% CI: 3.5-5.3, P < 10-6). BTNL8 encodes an intestinal epithelial regulator of Vγ4+γδ T cells implicated in regulating gut homeostasis. Enrichment was exclusive to MIS-C, being absent in patients with COVID-19 or bacterial disease. Using an available functional test for BTNL8, rare variants from a larger cohort of MIS-C patients (n = 835) were tested which identified eight variants in 18 patients (2.2%) with impaired engagement of Vγ4+γδ T cells. Most of these variants were in the B30.2 domain of BTNL8 implicated in sensing epithelial cell status. These findings were associated with altered intestinal permeability, suggesting a possible link between disrupted gut homeostasis and MIS-C-associated enteropathy triggered by SARS-CoV-2.
Aix Marseille University APHM Marseille France
Biocon Bristol Myers Squibb Research and Development Center Syngene Intl Ltd Bengaluru India
Bristol Myers Squibb Lawrenceville NJ USA
Catalan Institution of Research and Advanced Studies Barcelona Spain
CBC BIOTEC Biobank GHE Hospices Civils de Lyon Lyon France
Centre for Biomedical Research on Rare Diseases Instituto de Salud Carlos 3 Madrid Spain
Centre for Paediatrics and Child Health Faculty of Medicine Imperial College London London UK
CHU Sainte Justine Azrieli Research Center Montreal Canada
College of Medicine Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
Department of Biomedical Informatics University of California San Diego CA USA
Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
Department of Infectious Disease Imperial College London London UK
Department of Microbiology Infectious Diseases and Immunology University of Montreal Montreal Canada
Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
Department of Pediatric Infectious Diseases Ankara City Hospital Ankara Turkey
Department of Pediatric Infectious Diseases Gazi University School of Medicine Ankara Turkey
Department of Pediatrics King Fahad Hospital of the University Al Khobar Saudi Arabia
Department of Pediatrics Necker Hospital for Sick Children Paris France
Department of Pediatrics University of Montreal Montreal Canada
Division of Infection and Immunity University College London London UK
Division of Pediatric Infectious Diseases Medical Faculty Necmettin Erbakan University Konya Turkey
Emory University Department of Pediatrics and Human Genetics Atlanta GA USA
Ghent Univer sity Hospital Ghent Belgium
Hospital Universitario Marqués de Valdecilla Santander Spain
Howard Hughes Medical Institute Rockefeller University New York NY USA
Imagine Institute Paris Descartes Sorbonne Université Paris Cité Paris France
Imagine Institute Université Paris Cité Paris France
Immunosurveillance Laboratory The Francis Crick Institute London UK
Intensive Care Unit AP HP Pitié Salpêtrière Hospital Paris University Paris France
La Timone Children Hospital Aix Marseille University APHM Marseille France
Neurometabolic Diseases Laboratory Bellvitge Biomedical Research Institute Barcelona Spain
Rady Children's Hospital San Diego San Diego CA USA
Section of Biomedical Informatics and Data Science Yale School of Medicine New Haven CT USA
University College London Great Ormond St Institute of Child Health London UK
Yildirim Beyazit University Ankara City Hospital Ankara Turkey
Zobrazit více v PubMed
Abolhassani, H., Delavari S., Landegren N., Shokri S., Bastard P., Du L., Zuo F., Hajebi R., Abolnezhadian F., Iranparast S., et al. . 2022. Genetic and immunologic evaluation of children with inborn errors of immunity and severe or critical COVID-19. J. Allergy Clin. Immunol. 150:1059–1073. 10.1016/j.jaci.2022.09.005 PubMed DOI PMC
Aigner, J., Villatoro S., Rabionet R., Roquer J., Jiménez-Conde J., Martí E., and Estivill X.. 2013. A common 56-kilobase deletion in a primate-specific segmental duplication creates a novel butyrophilin-like protein. BMC Genet. 14:61. 10.1186/1471-2156-14-61 PubMed DOI PMC
Assante, G., Tourna A., Carpani R., Ferrari F., Prati D., Peyvandi F., Blasi F., Bandera A., Le Guennec A., Chokshi S., et al. . 2022. Reduced circulating FABP2 in patients with moderate to severe COVID-19 may indicate enterocyte functional change rather than cell death. Sci. Rep. 12:18792. 10.1038/s41598-022-23282-x PubMed DOI PMC
Asuni, N., and Wilder S.. 2019. VariantKey: A reversible numerical representation of human genetic variants. bioRxiv. 10.1101/473744 (Preprint posted February 15, 2019). DOI
Backman, J.D., Li A.H., Marcketta A., Sun D., Mbatchou J., Kessler M.D., Benner C., Liu D., Locke A.E., Balasubramanian S., et al. . 2021. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 599:628–634. 10.1038/s41586-021-04103-z PubMed DOI PMC
Beckmann, N.D., Comella P.H., Cheng E., Lepow L., Beckmann A.G., Tyler S.R., Mouskas K., Simons N.W., Hoffman G.E., Francoeur N.J., et al. . 2021. Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children. Nat. Commun. 12:4854. 10.1038/s41467-021-24981-1 PubMed DOI PMC
Benamar, M., Chen Q., Chou J., Julé A.M., Boudra R., Contini P., Crestani E., Lai P.S., Wang M., Fong J., et al. . 2023. The Notch1/CD22 signaling axis disrupts Treg function in SARS-CoV-2-associated multisystem inflammatory syndrome in children. J. Clin. Invest. 133:e163235. 10.1172/JCI163235 PubMed DOI PMC
Born, W., Cady C., Jones-Carson J., Mukasa A., Lahn M., and O’Brien R.. 1999. Immunoregulatory functions of gamma delta T cells. Adv. Immunol. 71:77–144. 10.1016/S0065-2776(08)60400-9 PubMed DOI
Bousfiha, A., Moundir A., Tangye S.G., Picard C., Jeddane L., Al-Herz W., Rundles C.C., Franco J.L., Holland S.M., Klein C., et al. . 2022. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 42:1508–1520. 10.1007/s10875-022-01352-z PubMed DOI
Butler-Laporte, G., Povysil G., Kosmicki J.A., Cirulli E.T., Drivas T., Furini S., Saad C., Schmidt A., Olszewski P., Korotko U., et al. . 2022. Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the host genetics initiative. PLoS Genet. 18:e1010367. 10.1371/journal.pgen.1010367 PubMed DOI PMC
Bycroft, C., Freeman C., Petkova D., Band G., Elliott L.T., Sharp K., Motyer A., Vukcevic D., Delaneau O., O’Connell J., et al. . 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature. 562:203–209. 10.1038/s41586-018-0579-z PubMed DOI PMC
Carter, M.J., Fish M., Jennings A., Doores K.J., Wellman P., Seow J., Acors S., Graham C., Timms E., Kenny J., et al. . 2020. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med. 26:1701–1707. 10.1038/s41591-020-1054-6 PubMed DOI
Casanova, J.L., and Anderson M.S.. 2023. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J. Clin. Invest. 133:e166283. 10.1172/JCI166283 PubMed DOI PMC
Casanova, J.L., Su H.C., and COVID Human Genetic Effort . 2020. A global Effort to define the human genetics of protective immunity to SARS-CoV-2 infection. Cell. 181:1194–1199. 10.1016/j.cell.2020.05.016 PubMed DOI PMC
Chae, J.J., Wood G., Masters S.L., Richard K., Park G., Smith B.J., and Kastner D.L.. 2006. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc. Natl. Acad. Sci. USA. 103:9982–9987. 10.1073/pnas.0602081103 PubMed DOI PMC
Chou, J., Platt C.D., Habiballah S., Nguyen A.A., Elkins M., Weeks S., Peters Z., Day-Lewis M., Novak T., Armant M., et al. . 2021. Mechanisms underlying genetic susceptibility to multisystem inflammatory syndrome in children (MIS-C). J. Allergy Clin. Immunol. 148:732–738.e1. 10.1016/j.jaci.2021.06.024 PubMed DOI PMC
Clementel, D., Del Conte A., Monzon A.M., Camagni G.F., Minervini G., Piovesan D., and Tosatto S.C.E.. 2022. RING 3.0: Fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Res. 50:W651–W656. 10.1093/nar/gkac365 PubMed DOI PMC
Consiglio, C.R., Cotugno N., Sardh F., Pou C., Amodio D., Rodriguez L., Tan Z., Zicari S., Ruggiero A., Pascucci G.R., et al. . 2020. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 183:968–981.e7. 10.1016/j.cell.2020.09.016 PubMed DOI PMC
Constantin, T., Pék T., Horváth Z., Garan D., and Szabó A.J.. 2023. Multisystem inflammatory syndrome in children (MIS-C): Implications for long COVID. Inflammopharmacology. 31:2221–2236. 10.1007/s10787-023-01272-3 PubMed DOI PMC
Dart, R.J., Zlatareva I., Vantourout P., Theodoridis E., Amar A., Kannambath S., East P., Recaldin T., Mansfield J.C., Lamb C.A., et al. . 2023. Conserved γδ T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. Science. 381:eadh0301. 10.1126/science.adh0301 PubMed DOI PMC
Di Marco Barros, R., Roberts N.A., Dart R.J., Vantourout P., Jandke A., Nussbaumer O., Deban L., Cipolat S., Hart R., Iannitto M.L., et al. . 2016. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell. 167:203–218.e17. 10.1016/j.cell.2016.08.030 PubMed DOI PMC
Dionne, A., Son M.B.F., and Randolph A.G.. 2022. An update on multisystem inflammatory syndrome in children related to SARS-CoV-2. Pediatr. Infect. Dis. J. 41:e6–e9. 10.1097/INF.0000000000003393 PubMed DOI PMC
D’Cruz, A.A., Babon J.J., Norton R.S., Nicola N.A., and Nicholson S.E.. 2013. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci. 22:1–10. 10.1002/pro.2185 PubMed DOI PMC
Esposito, S., and Principi N.. 2021. Multisystem inflammatory syndrome in children related to SARS-CoV-2. Paediatr. Drugs. 23:119–129. 10.1007/s40272-020-00435-x PubMed DOI PMC
Evans, R., O’neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., et al. . 2022. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 10.1101/2021.10.04.463034 (Preprint posted March 10, 2022). DOI
Ghosh, P., Katkar G.D., Shimizu C., Kim J., Khandelwal S., Tremoulet A.H., Kanegaye J.T., Bocchini J., Das S., Burns J.C., et al. . 2022. An Artificial Intelligence-guided signature reveals the shared host immune response in MIS-C and Kawasaki disease. Nat. Commun. 13:2687. 10.1038/s41467-022-30357-w PubMed DOI PMC
Gruber, C.N., Patel R.S., Trachtman R., Lepow L., Amanat F., Krammer F., Wilson K.M., Onel K., Geanon D., Tuballes K., et al. . 2020. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell. 183:982–995.e14. 10.1016/j.cell.2020.09.034 PubMed DOI PMC
Gudmundsson, S., Singer-Berk M., Watts N.A., Phu W., Goodrich J.K., Solomonson M., Rehm H.L., MacArthur D.G., O’Donnell-Luria A., and Genome Aggregation Database Consortium . 2022. Variant interpretation using population databases: Lessons from gnomAD. Hum. Mutat. 43:1012–1030. 10.1002/humu.24309 PubMed DOI PMC
Hayday, A., and Tigelaar R.. 2003. Immunoregulation in the tissues by gammadelta T cells. Nat. Rev. Immunol. 3:233–242. 10.1038/nri1030 PubMed DOI
Hoste, L., Van Paemel R., and Haerynck F.. 2021. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review. Eur. J. Pediatr. 180:2019–2034. 10.1007/s00431-021-03993-5 PubMed DOI PMC
Hoste, L., Roels L., Naesens L., Bosteels V., Vanhee S., Dupont S., Bosteels C., Browaeys R., Vandamme N., Verstaen K., et al. . 2022. TIM3+ TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. J. Exp. Med. 219:e20211381. 10.1084/jem.20211381 PubMed DOI PMC
Hsieh, L.E., Song J., Grifoni A., Shimizu C., Tremoulet A.H., Dummer K.B., Burns J.C., Sette A., and Franco A.. 2022. T cells in multisystem inflammatory syndrome in children (MIS-C) have a predominant CD4+ T helper response to SARS-CoV-2 peptides and numerous virus-specific CD4− CD8− double-negative T cells. Int. J. Mol. Sci. 23:7219. 10.3390/ijms23137219 PubMed DOI PMC
Jackson, H.R., Miglietta L., Habgood-Coote D., D’Souza G., Shah P., Nichols S., Vito O., Powell O., Davidson M.S., Shimizu C., et al. . 2023. Diagnosis of multisystem inflammatory syndrome in children by a whole-blood transcriptional signature. J. Pediatr. Infect. Dis. Soc. 12:322–331. 10.1093/jpids/piad035 PubMed DOI PMC
Josyabhatla, R., Kamdar A.A., Armbrister S.A., Daniel R., Boukas K., Smith K.G., Van Arsdall M.R., Kakarala K., Flores A.R., Wanger A., et al. . 2021. Recognizing a MIS-chievous cause of acute viral gastroenteritis. Front Pediatr. 9:748368. 10.3389/fped.2021.748368 PubMed DOI PMC
Jumper, J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. 10.1038/s41586-021-03819-2 PubMed DOI PMC
Kalla, R., Kennedy N.A., Ventham N.T., Boyapati R.K., Adams A.T., Nimmo E.R., Visconti M.R., Drummond H., Ho G.T., Pattenden R.J., et al. . 2016. Serum calprotectin: A novel diagnostic and prognostic marker in inflammatory bowel diseases. Am. J. Gastroenterol. 111:1796–1805. 10.1038/ajg.2016.342 PubMed DOI
Karczewski, K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. . 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581:434–443. 10.1038/s41586-020-2308-7 PubMed DOI PMC
Laing, A.G., Lorenc A., Del Molino Del Barrio I., Das A., Fish M., Monin L., Muñoz-Ruiz M., McKenzie D.R., Hayday T.S., Francos-Quijorna I., et al. . 2020. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 26:1623–1635. 10.1038/s41591-020-1038-6 PubMed DOI
Lee, P.Y., Platt C.D., Weeks S., Grace R.F., Maher G., Gauthier K., Devana S., Vitali S., Randolph A.G., McDonald D.R., et al. . 2020. Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J. Allergy Clin. Immunol. 146:1194–1200.e1. 10.1016/j.jaci.2020.07.033 PubMed DOI PMC
Lee, D., Le Pen J., Yatim A., Dong B., Aquino Y., Ogishi M., Pescarmona R., Talouarn E., Rinchai D., Zhang P., et al. . 2023. Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children. Science. 379:eabo3627. 10.1126/science.abo3627 PubMed DOI PMC
Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 10.48550/arXiv.1303.3997 (Preprint posted March 01, 2013). DOI
Li, H., and Durbin R.. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25:1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Love, M.I., Huber W., and Anders S.. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Mallick, S., Li H., Lipson M., Mathieson I., Gymrek M., Racimo F., Zhao M., Chennagiri N., Nordenfelt S., Tandon A., et al. . 2016. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature. 538:201–206. 10.1038/nature18964 PubMed DOI PMC
Markle, J.G., Mortin-Toth S., Wong A.S., Geng L., Hayday A., and Danska J.S.. 2013. γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. J. Immunol. 190:5392–5401. 10.4049/jimmunol.1203502 PubMed DOI PMC
Martinón-Torres, F., Salas A., Rivero-Calle I., Cebey-López M., Pardo-Seco J., Herberg J.A., Boeddha N.P., Klobassa D.S., Secka F., Paulus S., et al. . 2018. Life-threatening infections in children in Europe (the EUCLIDS project): A prospective cohort study. Lancet Child Adolesc. Health. 2:404–414. 10.1016/S2352-4642(18)30113-5 PubMed DOI
McLaren, W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R., Thormann A., Flicek P., and Cunningham F.. 2016. The Ensembl variant effect predictor. Genome Biol. 17:122. 10.1186/s13059-016-0974-4 PubMed DOI PMC
Melandri, D., Zlatareva I., Chaleil R.A.G., Dart R.J., Chancellor A., Nussbaumer O., Polyakova O., Roberts N.A., Wesch D., Kabelitz D., et al. . 2018. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19:1352–1365. 10.1038/s41590-018-0253-5 PubMed DOI PMC
Miller, J., Cantor A., Zachariah P., Ahn D., Martinez M., and Margolis K.G.. 2020. Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children that is related to coronavirus disease 2019: A single center experience of 44 cases. Gastroenterology. 159:1571–1574.e2. 10.1053/j.gastro.2020.05.079 PubMed DOI PMC
Mirdita, M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., and Steinegger M.. 2022. ColabFold: Making protein folding accessible to all. Nat. Methods. 19:679–682. 10.1038/s41592-022-01488-1 PubMed DOI PMC
Moreews, M., Le Gouge K., Khaldi-Plassart S., Pescarmona R., Mathieu A.L., Malcus C., Djebali S., Bellomo A., Dauwalder O., Perret M., et al. . 2021. Polyclonal expansion of TCR Vbeta 21.3(+) CD4(+) and CD8(+) T cells is a hallmark of multisystem inflammatory syndrome in children. Sci. Immunol. 6:eabh1516. 10.1126/sciimmunol.abh1516 PubMed DOI PMC
Morgulis, A., Gertz E.M., Schäffer A.A., and Agarwala R.. 2006. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol. 13:1028–1040. 10.1089/cmb.2006.13.1028 PubMed DOI
Newman, A.M., Steen C.B., Liu C.L., Gentles A.J., Chaudhuri A.A., Scherer F., Khodadoust M.S., Esfahani M.S., Luca B.A., Steiner D., et al. . 2019. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37:773–782. 10.1038/s41587-019-0114-2 PubMed DOI PMC
Noval Rivas, M., and Arditi M.. 2023. Kawasaki disease and multisystem inflammatory syndrome in children: Common inflammatory pathways of two distinct diseases. Rheum. Dis. Clin. North Am. 49:647–659. 10.1016/j.rdc.2023.03.002 PubMed DOI PMC
Paysan-Lafosse, T., Blum M., Chuguransky S., Grego T., Pinto B.L., Salazar G.A., Bileschi M.L., Bork P., Bridge A., Colwell L., et al. . 2023. InterPro in 2022. Nucleic Acids Res. 51:D418–D427. 10.1093/nar/gkac993 PubMed DOI PMC
Pedersen, B.S., and Quinlan A.R.. 2017. Who’s who? Detecting and resolving sample anomalies in human DNA sequencing studies with Peddy. Am. J. Hum. Genet. 100:406–413. 10.1016/j.ajhg.2017.01.017 PubMed DOI PMC
Poplin, R., Ruano-Rubio V., Depristo M.A., Fennell T.J., Carneiro M.O., Auwera G.V.D., Kling D.E., Gauthier L.D., Levy-Moonshine A., Roazen D., et al. . 2018. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 10.1101/201178 (Preprint posted July 24, 2018). DOI
Porritt, R.A., Paschold L., Rivas M.N., Cheng M.H., Yonker L.M., Chandnani H., Lopez M., Simnica D., Schultheiß C., Santiskulvong C., et al. . 2021. HLA class I-associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. J. Clin. Invest. 131:e146614. 10.1172/JCI146614 PubMed DOI PMC
Rentzsch, P., Witten D., Cooper G.M., Shendure J., and Kircher M.. 2019. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47:D886–D894. 10.1093/nar/gky1016 PubMed DOI PMC
Riquelme, P., Haarer J., Kammler A., Walter L., Tomiuk S., Ahrens N., Wege A.K., Goecze I., Zecher D., Banas B., et al. . 2018. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat. Commun. 9:2858. 10.1038/s41467-018-05167-8 PubMed DOI PMC
Riva, A., Gray E.H., Azarian S., Zamalloa A., McPhail M.J.W., Vincent R.P., Williams R., Chokshi S., Patel V.C., and Edwards L.A.. 2020. Faecal cytokine profiling as a marker of intestinal inflammation in acutely decompensated cirrhosis. JHEP Rep. Innov. Hepatol. 2:100151. 10.1016/j.jhepr.2020.100151 PubMed DOI PMC
Rowley, A.H., Shulman S.T., and Arditi M.. 2020. Immune pathogenesis of COVID-19-related multisystem inflammatory syndrome in children. J. Clin. Invest. 130:5619–5621. 10.1172/JCI143840 PubMed DOI PMC
Ruark, E., Münz M., Renwick A., Clarke M., Ramsay E., Hanks S., Mahamdallie S., Elliott A., Seal S., Strydom A., et al. . 2015. The ICR1000 UK exome series: A resource of gene variation in an outbred population. F1000 Res. 4:883. 10.12688/f1000research.7049.1 PubMed DOI PMC
Sacco, K., Castagnoli R., Vakkilainen S., Liu C., Delmonte O.M., Oguz C., Kaplan I.M., Alehashemi S., Burbelo P.D., Bhuyan F., et al. . 2022. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat. Med. 28:1050–1062. 10.1038/s41591-022-01724-3 PubMed DOI PMC
Sancho-Shimizu, V., Brodin P., Cobat A., Biggs C.M., Toubiana J., Lucas C.L., Henrickson S.E., Belot A., Tangye S.G., Milner J.D., et al. . 2021. SARS-CoV-2-related MIS-C: A key to the viral and genetic causes of Kawasaki disease? J. Exp. Med. 218:e20210446. 10.1084/jem.20210446 PubMed DOI PMC
Sandstrom, A., Peigné C.M., Léger A., Crooks J.E., Konczak F., Gesnel M.C., Breathnach R., Bonneville M., Scotet E., and Adams E.J.. 2014. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity. 40:490–500. 10.1016/j.immuni.2014.03.003 PubMed DOI PMC
Seethaler, B., Basrai M., Neyrinck A.M., Nazare J.A., Walter J., Delzenne N.M., and Bischoff S.C.. 2021. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastrointest. Liver Physiol. 321:G11–G17. 10.1152/ajpgi.00113.2021 PubMed DOI
Sehnal, D., Bittrich S., Deshpande M., Svobodová R., Berka K., Bazgier V., Velankar S., Burley S.K., Koča J., and Rose A.S.. 2021. Mol* viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49:W431–W437. 10.1093/nar/gkab314 PubMed DOI PMC
Shankar-Hari, M., Patel H., Carter M., Jackson H., Powell O., Fish M., Barberio M.T., Spada F., Petrov N., Wellman P., et al. . 2023. Immunology of severe febrile illness in children in the COVID-19 era. Res. Square. 10.21203/rs.3.rs-3385634/v1 DOI
Silk, M., Petrovski S., and Ascher D.B.. 2019. MTR-viewer: Identifying regions within genes under purifying selection. Nucleic Acids Res. 47:W121–W126. 10.1093/nar/gkz457 PubMed DOI PMC
Smit, A., Hubley R., and Green P.. 2015. RepeatMasker Open-4.0. http://www.repeatmasker.org.
Sun, H., and Yu G.. 2019. New insights into the pathogenicity of non-synonymous variants through multi-level analysis. Sci. Rep. 9:1667. 10.1038/s41598-018-38189-9 PubMed DOI PMC
Tangye, S.G., Al-Herz W., Bousfiha A., Cunningham-Rundles C., Franco J.L., Holland S.M., Klein C., Morio T., Oksenhendler E., Picard C., et al. . 2022. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J. Clin. Immunol. 42:1473–1507. 10.1007/s10875-022-01289-3 PubMed DOI PMC
Tsoukas, P., and Yeung R.S.M.. 2022. Kawasaki disease and MIS-C share a host immune response. Nat. Rev. Rheumatol. 18:555–556. 10.1038/s41584-022-00820-5 PubMed DOI PMC
Van Der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al. . 2013. From FastQ data to high confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics. 43, 11.10.1–11.10.33. 10.1002/0471250953.bi1110s43 PubMed DOI PMC
Vantourout, P., Laing A., Woodward M.J., Zlatareva I., Apolonia L., Jones A.W., Snijders A.P., Malim M.H., and Hayday A.C.. 2018. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology. Proc. Natl. Acad. Sci. USA. 115:1039–1044. 10.1073/pnas.1701237115 PubMed DOI PMC
Vazquez, S.E., Mann S.A., Bodansky A., Kung A.F., Quandt Z., Ferré E.M.N., Landegren N., Eriksson D., Bastard P., Zhang S.Y., et al. . 2022. Autoantibody discovery across monogenic, acquired, and COVID-19-associated autoimmunity with scalable PhIP-seq. Elife. 11:e78550. 10.7554/eLife.78550 PubMed DOI PMC
Vreugdenhil, A.C., Wolters V.M., Adriaanse M.P., Van den Neucker A.M., van Bijnen A.A., Houwen R., and Buurman W.A.. 2011. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand. J. Gastroenterol. 46:1435–1441. 10.3109/00365521.2011.627447 PubMed DOI
Wang, H., Shimizu C., Bainto E., Hamilton S., Jackson H.R., Estrada-Rivadeneyra D., Kaforou M., Levin M., Pancheri J.M., Dummer K.B., et al. . 2023. Subgroups of children with Kawasaki disease: A data-driven cluster analysis. Lancet Child Adolesc. Health. 7:697–707. 10.1016/S2352-4642(23)00166-9 PubMed DOI PMC
Whittaker, E., Bamford A., Kenny J., Kaforou M., Jones C.E., Shah P., Ramnarayan P., Fraisse A., Miller O., Davies P., et al. . 2020. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. 324:259–269. 10.1001/jama.2020.10369 PubMed DOI PMC
WHO 2020. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19. https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed May 19, 2023).
Willcox, C.R., Vantourout P., Salim M., Zlatareva I., Melandri D., Zanardo L., George R., Kjaer S., Jeeves M., Mohammed F., et al. . 2019. Butyrophilin-like 3 directly binds a human Vγ4+ T cell receptor using a modality distinct from clonally-restricted antigen. Immunity. 51:813–825.e4. 10.1016/j.immuni.2019.09.006 PubMed DOI PMC
Yeoh, S., Estrada-Rivadeneyra D., Jackson H., Keren I., Galassini R., Cooray S., Shah P., Agyeman P., Basmaci R., Carrol E., et al. . 2024. Plasma protein biomarkers distinguish multisystem inflammatory syndrome in children from other pediatric infectious and inflammatory diseases. Pediatr. Infect. Dis. J. 43:444–453. 10.1097/INF.0000000000004267 PubMed DOI PMC
Yonker, L.M., Gilboa T., Ogata A.F., Senussi Y., Lazarovits R., Boribong B.P., Bartsch Y.C., Loiselle M., Rivas M.N., Porritt R.A., et al. . 2021. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J. Clin. Invest. 131:e149633. 10.1172/JCI149633 PubMed DOI PMC
Yuan, L., Ma X., Yang Y., Qu Y., Li X., Zhu X., Ma W., Duan J., Xue J., Yang H., et al. . 2023. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature. 621:840–848. 10.1038/s41586-023-06525-3 PubMed DOI PMC
Zhang, Q., Bastard P., Liu Z., Le Pen J., Moncada-Velez M., Chen J., Ogishi M., Sabli I.K.D., Hodeib S., Korol C., et al. . 2020. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 370:eabd4570. 10.1126/science.abd4570 PubMed DOI PMC