The Importance of Catalytic Effects in Hot-Electron-Driven Chemical Reactions
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39632340
PubMed Central
PMC11656843
DOI
10.1021/acsnano.4c12923
Knihovny.cz E-resources
- Keywords
- Bimetallic Alloy, Compositional Catalyst Modification, Gradient, Hot-Electron, Photocatalysis,
- Publication type
- Journal Article MeSH
Hot electrons (HEs) represent out-of-equilibrium carriers that are capable of facilitating reactions which are inaccessible under conventional conditions. Despite the similarity of the HE process to catalysis, optimization strategies such as orbital alignment and adsorption kinetics have not received significant attention in enhancing the HE-driven reaction yield. Here, we investigate catalytic effects in HE-driven reactions using a compositional catalyst modification (CCM) approach. Through a top-down alloying process and systematic characterization, using electrochemical, photodegradation, and ultrafast spectroscopy, we are able to disentangle chemical effects from competing electronic phenomena. Correlation between reactant energetics and the HE reaction yield demonstrates the crucial role of orbital alignment in HE catalytic efficiency. Optimization of this parameter was found to enhance HE reaction efficiency 5-fold, paving the way for tailored design of HE-based catalysts for sustainable chemistry applications. Finally, our study unveils an emergent ordering effect in photocatalytic HE processes that imparts the catalyst with an unexpected polarization dependence.
Air Force Research Laboratory Materials and Manufacturing Directorate WPAFB Ohio 45433 United States
Department of Physics National Taiwan University Taipei 10617 Taiwan
Graduate Institute of Applied Physics National Taiwan University Taipei 10617 Taiwan
Institute of Atomic and Molecular Science Academia Sinica Taipei 10617 Taiwan
Research Center for Applied Sciences Academia Sinica Taipei 11529 Taiwan
See more in PubMed
Ahlawat M.; Mittal D.; Govind Rao V. Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis. Communications Materials 2021, 2 (1), 114.10.1038/s43246-021-00220-4. DOI
Aizpurua J.; Baletto F.; Baumberg J.; Christopher P.; De Nijs B.; Deshpande P.; Fernandez Y. D.; Fabris L.; Freakley S.; Gawinkowski S.; et al. Theory of hot electrons: general discussion. Faraday Discuss. 2019, 214, 245–281. 10.1039/C9FD90012H. PubMed DOI
Chen H. L.; Li C.-J.; Peng C.-J.; Leu H.-J.; Hung W.-H. Plasmon-induced hot electrons on mesoporous carbon for decomposition of organic pollutants under outdoor sunlight irradiation. ACS Appl. Mater. Interfaces 2017, 9 (1), 327–334. 10.1021/acsami.6b11360. PubMed DOI
Baruah D.; Yadav R. N. S.; Yadav A.; Das A. M. Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. Journal of Photochemistry and Photobiology B: Biology 2019, 201, 11164910.1016/j.jphotobiol.2019.111649. PubMed DOI
Khan Z. U. H.; Khan A.; Chen Y.; ullah Khan A.; Shah N. S.; Muhammad N.; Murtaza B.; Tahir K.; Khan F. U.; Wan P. Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic Azo dyes using AuNPs/GC as modified paste electrode. J. Alloys Compd. 2017, 725, 869–876. 10.1016/j.jallcom.2017.07.222. DOI
Hosny M.; Eltaweil A. S.; Mostafa M.; El-Badry Y. A.; Hussein E. E.; Omer A. M.; Fawzy M. Facile synthesis of gold nanoparticles for anticancer, antioxidant applications, and photocatalytic degradation of toxic organic pollutants. ACS omega 2022, 7 (3), 3121–3133. 10.1021/acsomega.1c06714. PubMed DOI PMC
Xiao F.; Ren H.; Zhou H.; Wang H.; Wang N.; Pan D. Porous montmorillonite@ graphene oxide@ Au nanoparticle composite microspheres for organic dye degradation. ACS Applied Nano Materials 2019, 2 (9), 5420–5429. 10.1021/acsanm.9b01043. DOI
Kumari G.; Zhang X.; Devasia D.; Heo J.; Jain P. K. Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano 2018, 12 (8), 8330–8340. 10.1021/acsnano.8b03617. PubMed DOI
Shangguan W.; Liu Q.; Wang Y.; Sun N.; Liu Y.; Zhao R.; Li Y.; Wang C.; Zhao J. Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions. Nat. Commun. 2022, 13 (1), 3894.10.1038/s41467-022-31474-2. PubMed DOI PMC
Renones P.; Collado L.; Iglesias-Juez A.; Oropeza F. E.; Fresno F.; de la Peña O’Shea V. c. A. Silver–gold bimetal-loaded TiO2 photocatalysts for CO2 reduction.. Ind. Eng. Chem. Res. 2020, 59 (20), 9440–9450. 10.1021/acs.iecr.0c01034. DOI
Yu S.; Wilson A. J.; Heo J.; Jain P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 2018, 18 (4), 2189–2194. 10.1021/acs.nanolett.7b05410. PubMed DOI
Lee S. W. Hot electron-driven chemical reactions: A review. Applied Surface Science Advances 2023, 16, 10042810.1016/j.apsadv.2023.100428. DOI
Chen Z. W.; Li J.; Ou P.; Huang J. E.; Wen Z.; Chen L.; Yao X.; Cai G.; Yang C. C.; Singh C. V. Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 2024, 15 (1), 359.10.1038/s41467-023-44261-4. PubMed DOI PMC
Sun Y.; Gao S.; Lei F.; Xie Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44 (3), 623–636. 10.1039/C4CS00236A. PubMed DOI
Kim M.; Lin M.; Son J.; Xu H.; Nam J. M. Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Advanced Optical Materials 2017, 5 (15), 170000410.1002/adom.201700004. DOI
Valenti M.; Venugopal A.; Tordera D.; Jonsson M. P.; Biskos G.; Schmidt-Ott A.; Smith W. A. Hot carrier generation and extraction of plasmonic alloy nanoparticles. ACS photonics 2017, 4 (5), 1146–1152. 10.1021/acsphotonics.6b01048. PubMed DOI PMC
Kim H.; Kim Y. J.; Jung Y. S.; Park J. Y. Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide. Nanoscale Advances 2020, 2 (10), 4410–4416. 10.1039/D0NA00602E. PubMed DOI PMC
Zheng B.; Zhao H.; Manjavacas A.; McClain M.; Nordlander P.; Halas N. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 2015, 6, 7797.10.1038/ncomms8797. PubMed DOI PMC
Dwivedi C.; Chaudhary A.; Srinivasan S.; Nandi C. K. Polymer stabilized bimetallic alloy nanoparticles: synthesis and catalytic application. Colloid and Interface Science Communications 2018, 24, 62–67. 10.1016/j.colcom.2018.04.001. DOI
Coviello V.; Forrer D.; Amendola V. Recent developments in plasmonic alloy nanoparticles: synthesis, modelling, properties and applications. ChemPhysChem 2022, 23 (21), e20220013610.1002/cphc.202200136. PubMed DOI PMC
Rioux D.; Vallières S.; Besner S.; Muñoz P.; Mazur E.; Meunier M. An analytic model for the dielectric function of Au, Ag, and their alloys. Advanced Optical Materials 2014, 2 (2), 176–182. 10.1002/adom.201300457. DOI
Lee S. W.; Kim J. M.; Park W.; Lee H.; Lee G. R.; Jung Y.; Jung Y. S.; Park J. Y. Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces. Nat. Commun. 2021, 12 (1), 40.10.1038/s41467-020-20293-y. PubMed DOI PMC
Nakaya Y.; Furukawa S. Catalysis of alloys: classification, principles, and design for a variety of materials and reactions. Chem. Rev. 2023, 123 (9), 5859–5947. 10.1021/acs.chemrev.2c00356. PubMed DOI
Nguyen M. T.; Yonezawa T.; Wang Y.; Tokunaga T. Double target sputtering into liquid: A new approach for preparation of Ag–Au alloy nanoparticles. Mater. Lett. 2016, 171, 75–78. 10.1016/j.matlet.2016.02.047. DOI
Deng L.; Hu W.; Deng H.; Xiao S.; Tang J. Au–Ag bimetallic nanoparticles: surface segregation and atomic-scale structure. J. Phys. Chem. C 2011, 115 (23), 11355–11363. 10.1021/jp200642d. DOI
Vollath D.; Fischer F. D.; Holec D. Surface energy of nanoparticles–influence of particle size and structure. Beilstein journal of nanotechnology 2018, 9 (1), 2265–2276. 10.3762/bjnano.9.211. PubMed DOI PMC
Tran R.; Xu Z.; Radhakrishnan B.; Winston D.; Sun W.; Persson K. A.; Ong S. P. Surface energies of elemental crystals. Scientific data 2016, 3 (1), 1–13. 10.1038/sdata.2016.80. PubMed DOI PMC
Ismail A. M.; Csapó E.; Janáky C. Correlation between the work function of Au–Ag nanoalloys and their electrocatalytic activity in carbon dioxide reduction.. Electrochim. Acta 2019, 313, 171–178. 10.1016/j.electacta.2019.05.016. DOI
Huang J.; Vongehr S.; Tang S.; Lu H.; Shen J.; Meng X. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 2009, 25 (19), 11890–11896. 10.1021/la9015383. PubMed DOI
Nicoli L.; Lafiosca P.; Grobas Illobre P.; Bonatti L.; Giovannini T.; Cappelli C. Fully atomistic modeling of plasmonic bimetallic nanoparticles: nanoalloys and core-shell systems. Frontiers in Photonics 2023, 4, 119959810.3389/fphot.2023.1199598. DOI
Furube A.; Hashimoto S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Materials 2017, 9 (12), e454–e454. 10.1038/am.2017.191. DOI
Zhang X.; Huang C.; Wang M.; Huang P.; He X.; Wei Z. Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles. Sci. Rep. 2018, 8 (1), 1049910.1038/s41598-018-28909-6. PubMed DOI PMC
Zhao L.-B.; Huang R.; Huang Y.-F.; Wu D.-Y.; Ren B.; Tian Z.-Q.. Photon-driven charge transfer and Herzberg-Teller vibronic coupling mechanism in surface-enhanced Raman scattering of p-aminothiophenol adsorbed on coinage metal surfaces: A density functional theory study. J. Chem. Phys. 2011, 135 ( (13), ),10.1063/1.3643766. PubMed DOI
Huang Y. F.; Zhang M.; Zhao L. B.; Feng J. M.; Wu D. Y.; Ren B.; Tian Z. Q. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. 2014, 126 (9), 2385–2389. 10.1002/ange.201310097. PubMed DOI
Yang J.-L.; Wang H.-J.; Zhang H.; Tian Z.-Q.; Li J.-F.. Probing hot electron behaviors by surface-enhanced raman spectroscopy. Cell Reports Physical Science 2020, 1 ( (9), ), 100184.10.1016/j.xcrp.2020.100184. DOI
Alessandri I. 4-Aminothiophenol Photodimerization Without Plasmons. Angew. Chem., Int. Ed. 2022, 61 (28), e20220501310.1002/anie.202205013. PubMed DOI PMC
Yu Y.; Fu M.; Gu H.; Wang L.; Liu W.; Xie Q.; Wu G. Dissociative Adsorption of O2 on Ag3Au (111) Surface: A Density Functional Theory Study. Crystals 2024, 14 (6), 504.10.3390/cryst14060504. DOI
Dononelli W.; Klüner T. CO adsorption and oxygen activation on group 11 nanoparticles–a combined DFT and high level CCSD (T) study about size effects and activation processes. Faraday Discuss. 2018, 208, 105–121. 10.1039/C7FD00225D. PubMed DOI
Hankin A.; Bedoya-Lora F. E.; Alexander J. C.; Regoutz A.; Kelsall G. H. Flat band potential determination: avoiding the pitfalls. Journal of Materials Chemistry A 2019, 7 (45), 26162–26176. 10.1039/C9TA09569A. DOI
Resasco J.; Zhang H.; Kornienko N.; Becknell N.; Lee H.; Guo J.; Briseno A. L.; Yang P. TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS central science 2016, 2 (2), 80–88. 10.1021/acscentsci.5b00402. PubMed DOI PMC
Sakar M.; Mithun Prakash R.; Do T.-O. Insights into the TiO2-based photocatalytic systems and their mechanisms. Catalysts 2019, 9 (8), 680.10.3390/catal9080680. DOI
Chen H.; Liu G.; Wang L. Switched photocurrent direction in Au/TiO2 bilayer thin films. Sci. Rep. 2015, 5 (1), 1085210.1038/srep10852. PubMed DOI PMC
Trasatti S. The absolute electrode potential: an explanatory note (Recommendations 1986). Pure Appl. Chem. 1986, 58 (7), 955–966. 10.1351/pac198658070955. DOI
Pavaskar P.; Theiss J.; Cronin S. B. Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles. Opt. Express 2012, 20 (13), 14656–14662. 10.1364/OE.20.014656. PubMed DOI