Performance analysis of dual-hop mixed RF-FSO systems combined with NOMA
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39705226
PubMed Central
PMC11661647
DOI
10.1371/journal.pone.0315123
PII: PONE-D-24-24546
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- Wireless Technology MeSH
- Monte Carlo Method * MeSH
- Computer Simulation MeSH
- Radio Waves MeSH
- Models, Theoretical MeSH
- Publication type
- Journal Article MeSH
This paper investigates the performance of hybrid radio frequency/free space optical (RF/FSO) systems combined with non-orthogonal multiple access communications technology. We examine a scenario where the source and destination are separated by a large distance, with no direct link between them. The relay, denoted R, operates using the decode-and-forward (DF) protocol. Under the DF relaying scheme, the relay employs successive interference cancellation (SIC). In this setup, the FSO link from the source to the relay follows a Gamma-Gamma distribution, while the RF link from the relay to multiple users follow a Nakagami-m distribution. Based on this system model, we analyze the outage probability (OP). Our findings indicate a direct relationship between SIC and OP performance: the higher the SIC capability, the more effective the system. In addition, the system's performance is dependent on the parameters of the FSO channel. Finally, Monte Carlo simulations are presented to further validate our framework and findings.
See more in PubMed
Fazio P., Sottile C., Santamaria A. F., Tropea M. Vehicular networking enhancement and multi-channel routing optimization, based on multi-objective metric and minimum spanning tree. Advances in Electrical and Electronic Engineering 2013;11(5):349–356. doi: 10.15598/aeee.v11i5.903 DOI
Fazio, P., Tropea, M., Veltri, F., Marano, S. A new routing protocol for interference and path-length minimization in vehicular networks. In 2012 IEEE 75th Vehicular Technology Conference (VTC Spring); 2012 May;1-5; Yokohama, Japan: IEEE.
Khalighi M. A., Uysal M. Survey on free space optical communication: A communication theory perspective. IEEE communications surveys & tutorials 2013;16(4):2231–2258. doi: 10.1109/COMST.2014.2329501 DOI
Anbarasi K., Hemanth C., Sangeetha R. G. A review on channel models in free space optical communication systems. Optics & Laser Technology 2017;97:161–171. doi: 10.1016/j.optlastec.2017.06.018 DOI
Garlinska M., Pregowska A., Gutowska I., Osial M., Szczepanski J. Experimental study of the free space optics communication system operating in the 8–12 μm spectral range. Electronics 2021;10(8):875. doi: 10.3390/electronics10080875 DOI
Wang Y., Xu, et al.. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence. Scientific reports 2018;8(1):1124. doi: 10.1038/s41598-018-19559-9 PubMed DOI PMC
Ullah Rahat, et al.. High-capacity free space optics-based passive optical network for 5g front-haul deployment. Photonics 2023;10(10):1073. doi: 10.3390/photonics10101073 DOI
Xu G., Song Z. Effects of solar scintillation on deep space communications: challenges and prediction techniques. IEEE Wireless Communications 2019;26(2):10–16. doi: 10.1109/MWC.2019.1800271 DOI
Kaushal H., Kaddoum G Optical communication in space: Challenges and mitigation techniques. IEEE communications surveys & tutorials 2016;19(1):57–96. doi: 10.1109/COMST.2016.2603518 DOI
Ullah Rahat, et al.. Optimization and analysis of Spectral/Spatial optical code division multiple access passive optical network. AEU-International Journal of Electronics and Communications 2024;175:155084.
Nguyen T. N., Duy T. T., Luu G. T., Tran P. T., Vozňák M. Energy harvesting-based spectrum access with incremental cooperation, relay selection and hardware noises. Radioengineering 2017;26(1):240–250. doi: 10.13164/re.2017.0240 DOI
Liang H., Gao C., Li Y., Miao M., Li X. Performance analysis of mixed MISO RF/SIMO FSO relaying systems. Optics Communications 2021;478:126344. doi: 10.1016/j.optcom.2020.126344 DOI
Petkovic M. I., Ansari I. S., Djordjevic G. T., Qaraqe K. A. Error rate and ergodic capacity of RF-FSO system with partial relay selection in the presence of pointing errors. Optics Communications 2019;438:118–125. doi: 10.1016/j.optcom.2019.01.028 DOI
Zedini E., Ansari I. S., Alouini M. S. Performance analysis of mixed Nakagami-m and Gamma–Gamma dual-hop FSO transmission systems. IEEE Photonics Journal 2014;7(1):1–20. doi: 10.1109/JPHOT.2014.2381657 DOI
Jamali M. V., Mahdavifar H. Uplink non-orthogonal multiple access over mixed RF-FSO systems. IEEE Transactions on Wireless Communications 2020;19(5):3558–3574. doi: 10.1109/TWC.2020.2974947 DOI
Yang L., Liu T., Chen J., Alouini M. S. Physical-Layer Security for Mixed η–μ and DOI
Wang Z., Shi W., Liu W. Performance analysis of mixed RF/FSO system with spatial diversity. Optics Communications 2019;443:230–237. doi: 10.1016/j.optcom.2019.03.040 DOI
Yi X., Shen C., Yue P., Wang Y., Ao Q. Performance of decode-and-forward mixed RF/FSO system over κ—μ shadowed and exponentiated Weibull fading. Optics Communications 2019;439:103–111. doi: 10.1016/j.optcom.2019.01.003 DOI
Balti E., Guizani M. Mixed RF/FSO cooperative relaying systems with co-channel interference. IEEE Transactions on Communications 2018;66(9):4014–4027. doi: 10.1109/TCOMM.2018.2818697 DOI
Upadhya A., Gupta J., Dwivedi V. K., Alouini M. S. Impact of RF I/Q imbalance on interference-limited mixed RF/FSO TWR systems with non-zero boresight error. IEEE Wireless Communications Letters 2020;10(2):416–420. doi: 10.1109/LWC.2020.3033528 DOI
Pham X. N., et al.. Enhancing data rate and energy efficiency of NOMA systems using reconfigurable intelligent surfaces for millimeter-wave communications. Digital Signal Processing 2024;151:104553. doi: 10.1016/j.dsp.2024.104553 DOI
Vo D. T., Nguyen T. N., Le A. T., Phan V. D., Voznak M. Holographic Reconfigurable Intelligent Surface-Aided Downlink NOMA IoT Networks in Short-Packet Communication. IEEE Access 2024;12:65266–65277.
Le AT, Hieu TD, Nguyen TN, Le TL, Nguyen SQ, Voznak M. Physical layer security analysis for RIS-aided NOMA systems with non-colluding eavesdroppers. Computer Communications. 2024;219:194–203. doi: 10.1016/j.comcom.2024.03.011 DOI
Le AT, Tran DH, Le CB, Tin PT, Nguyen TN, Ding Z, et al.. Power Beacon and NOMA-Assisted Cooperative IoT Networks With Co-Channel Interference: Performance Analysis and Deep Learning Evaluation. IEEE Transactions on Mobile Computing. 2024;23(6):7270–7283. doi: 10.1109/TMC.2023.3333764 DOI
Ma Yiming, et al.. NOMA security scheme based on constellation camouflage and selective mapping. Optics Letters. 2023;48(15):4101–4104. doi: 10.1364/OL.493540 PubMed DOI
Timotheou S, Krikidis I. Fairness for Non-Orthogonal Multiple Access in 5G Systems. IEEE Signal Processing Letters. 2015;22(10):1647–1651 doi: 10.1109/LSP.2015.2417119 DOI
Ding Z, Lei X, Karagiannidis GK, Schober R, Yuan J, Bhargava VK. A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends. IEEE Journal on Selected Areas in Communications. 2017;35(10):2181–2195. doi: 10.1109/JSAC.2017.2725519 DOI
Rose K, Eldridge S, Chapin L. The internet of things: An overview. The internet society (ISOC). 2015;80(15):1–53.
Li S, Xu LD, Zhao S. The internet of things: a survey. Information systems frontiers. 2015;17:243–259. doi: 10.1007/s10796-014-9492-7 DOI
Hu L, et al.. Cooperative Jamming for Physical Layer Security Enhancement in Internet of Things. IEEE Internet of Things Journal. 2018;5(1):219–228. doi: 10.1109/JIOT.2017.2778185 DOI
Rappaport TS. Wireless Communications: Principles and Practice. Prentice Hall; 2002.
Zhang L, et al.. Layered-Division- Multiplexing: Theory and Practice. IEEE Transactions on Broadcasting. 2016;62(1):216–232. doi: 10.1109/TBC.2015.2505408 DOI
Qi T, Feng W, Wang Y. Outage performance of non-orthogonal multiple access based unmanned aerial vehicles satellite networks. China Communications. 2018;15(5):1–8. doi: 10.1109/CC.2018.8387982 DOI
Sohail MF, Leow CY, Won S. Non-Orthogonal Multiple Access for Unmanned Aerial Vehicle Assisted Communication. IEEE Access. 2018;6:22716–22727. doi: 10.1109/ACCESS.2018.2826650 DOI
Yan X, et al.. The Application of Power-Domain Non-Orthogonal Multiple Access in Satellite Communication Networks. IEEE Access. 2019;7:63531–63539. doi: 10.1109/ACCESS.2019.2917060 DOI
Nguyen NT, Nguyen HN, Nguyen NL, Le AT, Nguyen TN, Voznak M. Performance Analysis of NOMA-Based Hybrid Satellite-Terrestrial Relay System Using mmWave Technology. IEEE Access. 2023;11:10696–10707. doi: 10.1109/ACCESS.2023.3238335 DOI
Cheng Y, Li KH, Liu Y, Teh KC, Karagiannidis GK. Non-Orthogonal Multiple Access (NOMA) With Multiple Intelligent Reflecting Surfaces. IEEE Transactions on Wireless Communications. 2021;20(11):7184–7195. doi: 10.1109/TWC.2021.3081423 DOI
Phu LS, et al.. Improving the Capacity of NOMA Network Using Multiple Aerial Intelligent Reflecting Surfaces. IEEE Access. 2023;11:107958–107971. doi: 10.1109/ACCESS.2023.3319675 DOI
Najafi M, Jamali V, Diamantoulakis PD, Karagiannidis GK, Schober R. Non- orthogonal multiple access for FSO backhauling. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC); 2018. p. 1–6.
Li R, Dang A. Performance analysis of non-orthogonal multiple access in free space optical communication system. arXiv preprint arXiv:170706571. 2017;
Lei X, Yang L, Zhang J, Li G, Chen J. LAP-Based FSO-RF Cooperative NOMA Systems. In: 2020 IEEE 92nd Vehicular Technology Conference; 2020. p. 1–5.
Jamali MV, Mahdavifar H. Uplink Non-Orthogonal Multiple Access Over Mixed RF-FSO Systems. IEEE Transactions on Wireless Communications. 2020;19(5):3558–3574. doi: 10.1109/TWC.2020.2974947 DOI
Ben Halima N, Boujemaa H. Optimal power allocation and harvesting duration for mixed RF/FSO using non orthogonal multiple access. Optical and Quantum Electronics. 2020;52(10):442. doi: 10.1007/s11082-020-02560-w DOI
Li R, Chen T, Fan L, Dang A. Performance analysis of a multiuser dual-hop amplify- and-forward relay system with FSO/RF links. Journal of Optical Communications and Networking. 2019;11(7):362–370. doi: 10.1364/JOCN.11.000362 DOI
Nguyen ND, Le AT. Employing Non-Orthogonal Multiple Access for A Dual-Hop Relaying System With FSO/RF Links. In: 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS); 2021. p. 346–351.
Zhuang Y, Zhang J. Secrecy performance analysis for a NOMA based FSO-RF system with imperfect CSI. Journal of Optical Communications and Networking. 2022;14(7):500–510. doi: 10.1364/JOCN.454367 DOI
Samir A, Elsayed M, El-Banna AAA, Shafique Ansari I, Rabie K, ElHalawany BM. Performance analysis of dual-hop hybrid RF-UOWC NOMA systems. Sensors. 2022;22(12):4521. doi: 10.3390/s22124521 PubMed DOI PMC
Zhang J, Zhang L, Pan G. Outage Performance for NOMA-Based FSO-RF Systems With a Dual Energy Harvesting Mode. IEEE Internet of Things Journal. 2023;10(18):16076–16086. doi: 10.1109/JIOT.2023.3267136 DOI
Zhang L, Zhang J, Hu N, Li X, Pan G. Outage Performance for NOMA- Based FSO-RF Systems With Transmit Antenna Selection and Nonlinear Energy Harvesting. IEEE Internet of Things Journal. 2023;10(7):6491–6506. doi: 10.1109/JIOT.2022.3227043 DOI
Kumar R, Shukla MK, Kumar V, Tripathi R. Dual-Hop Mixed FSO-RF Wireless Powered Relaying System: Performance Analysis With Nonlinear Energy Harvest- ing. IEEE Transactions on Green Communications and Networking. 2024; p. 1–1. doi: 10.1109/TGCN.2024.3482866 DOI
Zhou J, Wang R, Shihada B, Alouini MS. End-to-End Uplink Perfor- mance Analysis of Satellite-Based IoT Networks: A Stochastic Geometry Ap- proach. IEEE Open Journal of the Communications Society. 2024;5:4036–4045. doi: 10.1109/OJCOMS.2024.3422110 DOI
Sun Q, Hu Q, Wu Y, Chen X, Zhang J, L´opez-Ben´ıtez M. Performance Analysis of Mixed FSO/RF System for Satellite-Terrestrial Relay Network. IEEE Transactions on Vehicular Technology. 2024;73(8):11378–11393. doi: 10.1109/TVT.2024.3373653 DOI
Hoang TM, Nguyen BC, Dung LT, Kim T. Outage Performance of Multi-Antenna Mobile UAV-Assisted NOMA Relay Systems Over Nakagami-m Fading Channels. IEEE Access. 2020;8:215033–215043. doi: 10.1109/ACCESS.2020.3041311 DOI
Chatzidiamantis ND, Karagiannidis GK. On the Distribution of the Sum of Gamma-Gamma Variates and Applications in RF and Optical Wireless Com- munications. IEEE Transactions on Communications. 2011;59(5):1298–1308. doi: 10.1109/TCOMM.2011.020811.090205 DOI
Zhang J, Dai L, Zhang Y, Wang Z. Unified Performance Analysis of Mixed Radio Frequency/Free-Space Optical Dual-Hop Transmission Systems. Journal of Lightwave Technology. 2015;33(11):2286–2293. doi: 10.1109/JLT.2015.2409570 DOI
Navidpour SM, Uysal M, Kavehrad M. BER Performance of Free-Space Optical Transmission with Spatial Diversity. IEEE Transactions on Wireless Communications. 2007;6(8):2813–2819. doi: 10.1109/TWC.2007.06109 DOI
NAKAGAMI M. The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading. In: HOFFMAN WC, editor. Statistical Methods in Radio Wave Propagation. Pergamon; 1960. p. 3–36.
Uysal M. Diversity analysis of space-time coding in cascaded Rayleigh fading channels. IEEE Communications Letters. 2006;10(3):165–167. doi: 10.1109/LCOMM.2006.1603372 DOI
Tsiftsis T. Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels. Electronics Letters. 2008;44(5):1. doi: 10.1049/el:20083028 DOI
Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. Academic press; 2014.
Do DT, Le CB, Vahid A, Mumtaz S. Antenna Selection and Device Grouping for Spectrum-Efficient UAV-Assisted IoT Systems. IEEE Internet of Things Journal. 2023;10(9):8014–8030. doi: 10.1109/JIOT.2022.3229592 DOI
Zhao B, Zhang C, Yi W, Liu Y. Ergodic Rate Analysis of STAR-RIS Aided NOMA Systems. IEEE Communications Letters. 2022;26(10):2297–2301. doi: 10.1109/LCOMM.2022.3194363 DOI
Lei X, Yang L, Zhang J, Li G, Chen J. LAP-Based FSO-RF Cooperative NOMA Systems. In: 2020 IEEE 92nd Vehicular Technology Conference; 2020. p. 1–5.
Dao TTT, Nguyen SQ, Nhung-Nguyen H, Nguyen PX, Kim YH. Performance Evaluation of Downlink Multiple Users NOMA-Enable UAV-Aided Communication Systems Over Nakagami-m Fading Environments. IEEE Access. 2021;9:151641–151653. doi: 10.1109/ACCESS.2021.3124017 DOI
Do TN, Kaddoum G, Nguyen TL, da Costa DB, Haas ZJ. Multi- RIS-Aided Wireless Systems: Statistical Characterization and Performance Analysis. IEEE Transactions on Communications. 2021;69(12):8641–8658. doi: 10.1109/TCOMM.2021.3117599 DOI