Four new genome sequences of the Pallas's cat (Otocolobus manul): an insight into the patterns of within-species variability
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
39720181
PubMed Central
PMC11667119
DOI
10.3389/fgene.2024.1463774
PII: 1463774
Knihovny.cz E-resources
- Keywords
- EPAS1, genome, manul, sequencing, variability,
- Publication type
- Journal Article MeSH
Manul (Otocolobus manul) is the only representative of the genus Otocolobus, which makes up the Leopard Cat lineage along with the genus Prionailurus. Their habitat is characterized by harsh environmental conditions. Although their populations are probably more stable than previously thought, it is still the case that their population size is declining. Conservation programs exist to protect manuls, but those based on captive breeding are often unsuccessful due to their increased susceptibility to diseases. The manul is therefore a suitable model species for evolutionary and diversity studies as well as for studying mechanisms of adaptation to harsh environment and mechanisms of susceptibility to diseases. Recently, the genome of the O. manul based on nanopore long-range sequencing has been published. Aiming to better understand inter- and intraspecific variation of the species, we obtained information on genome sequences of four other manuls, based on whole genome resequencing via the Illumina platform. On average, we detected a total of 3,636,571 polymorphic variants. Information on different types of structural variants and on the extent of SNP homozygosity, not available from the reference genome, was retrieved. The average whole-genome heterozygosity was almost identical to that found in the O. manul reference genome. In this context, we performed a more detailed analysis of the candidate gene EPAS1 potentially related to adaptation to the hypoxic environment. This analysis revealed both inter- and intraspecific variation, confirmed the presence of a previously described non-synonymous substitution in exon 15 unique to manuls and identified three additional unique non-synonymous substitutions located in so far not analyzed EPAS1 exonic sequences. The analysis of lncRNA located in the intron 7 of EPAS1 revealed interspecific variability and monomorphic nature of the sequence among analyzed manuls. The data obtained will allow more detailed analyses of the manul genome, focusing on genes and pathways involved in their adaptation to the environment and in susceptibility to diseases. This information can be helpful for optimizing conservation programs for this understudied species.
Department of Animal Genetics VETUNI Brno Brno Czechia
Research Group Animal Immunogenomics CEITEC VETUNI Brno Brno Czechia
Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Vienna Austria
See more in PubMed
Abyzov A., Urban A. E., Snyder M., Gerstein M. (2011). CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21 (6), 974–984. 10.1101/gr.114876.110 PubMed DOI PMC
Aylward M., Sagar V., Natesh M., Ramakrishnan U. (2022). How methodological changes have influenced our understanding of population structure in threatened species: insights from tiger populations across India. Philos. Trans. R. Soc. Lond B Biol. Sci. 377 (1852), 20200418. 10.1098/rstb.2020.0418 PubMed DOI PMC
Barclay D., Smelansky I., Nygren E., Antonevich A. (2019). Legal status, utilisation, management and conservation of manul. CATnews 2019 (13), 37–40.
Basso W., Edelhofer R., Zenker W., Möstl K., Kübber-Heiss A., Prosl H. (2005). Toxoplasmosis in Pallas’ cats (Otocolobus manul) raised in captivity. Parasitology 130 (Pt 3), 293–299. 10.1017/s0031182004006584 PubMed DOI
Bigham A. W., Lee F. S. (2014). Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 28 (20), 2189–2204. 10.1101/gad.250167.114 PubMed DOI PMC
Brandies P., Peel E., Hogg C. J., Belov K. (2019). The value of reference genomes in the conservation of threatened species. Genes (Basel) 10 (11), 846. 10.3390/genes10110846 PubMed DOI PMC
Brlek P., Bulić L., Bračić M., Projić P., Škaro V., Shah N., et al. (2024). Implementing whole genome sequencing (WGS) in clinical practice: advantages, challenges, and future perspectives. Cells 13 (6), 504. 10.3390/cells13060504 PubMed DOI PMC
Broad Institute (2019). Picard toolkit. Available at: https://broadinstitute.github.io/picard/.
Brown M., Lappin M., Brown J., Munkhtsog B., Swanson W. (2005). Exploring the ecologic basis for extreme susceptibility of Pallas’ cats (Otocolobus manul) to fatal toxoplasmosis. J. Wildl. Dis. 41, 691–700. 10.7589/0090-3558-41.4.691 PubMed DOI
Byrne A. Q., Richards-Zawacki C. L., Voyles J., Bi K., Ibáñez R., Rosenblum E. B. (2021). Whole exome sequencing identifies the potential for genetic rescue in iconic and critically endangered Panamanian harlequin frogs. Glob. Change Biol. 27 (1), 50–70. 10.1111/gcb.15405 PubMed DOI
Cao Y., Zhang D., Zhou H. (2019). Key genes differential expressions and pathway involved in salt and water-deprivation stresses for renal cortex in camel. BMC Mol. Biol. 20, 11. 10.1186/s12867-019-0129-8 PubMed DOI PMC
Chen K., Wallis J. W., McLellan M. D., Larson D. E., Kalicki J. M., Pohl C. S., et al. (2009). BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6 (9), 677–681. 10.1038/nmeth.1363 PubMed DOI PMC
Danecek P., Bonfield J. K., Liddle J., Marshall J., Ohan V., Pollard M. O., et al. (2021). Twelve years of SAMtools and BCFtools. GigaScience 10 (2), giab008. 10.1093/gigascience/giab008 PubMed DOI PMC
DePristo M. A., Banks E., Poplin R. E., Garimella K. V., Maguire J. R., Hartl C., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43 (5), 491–498. 10.1038/ng.806 PubMed DOI PMC
Faulkes C. G., Eykyn T. R., Miljkovic J. L., Gilbert J. D., Charles R. L., Prag H. A., et al. (2024). Naked mole-rats have distinctive cardiometabolic and genetic adaptations to their underground low-oxygen lifestyles. Nat. Commun. 15 (1), 2204. 10.1038/s41467-024-46470-x PubMed DOI PMC
Flack N., Drown M., Walls C., Pratte J., McLain A., Faulk C. (2023). Chromosome-level, nanopore-only genome and allele-specific DNA methylation of Pallas’s cat, Otocolobus manul. Nar. Genom Bioinform 5 (2), lqad033. 10.1093/nargab/lqad033 PubMed DOI PMC
Friedrich J., Wiener P. (2020). Selection signatures for high-altitude adaptation in ruminants. Anim. Genet. 51 (2), 157–165. 10.1111/age.12900 PubMed DOI
Gray T. N. E. (2014). The status of jungle cat and sympatric small cats in Cambodia’s Eastern Plains Landscape. Cat. News Spec. Issue 8, 19–23.
Hall T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids S 41 (41), 95–98.
Huddleston J., Chaisson M. J. P., Steinberg K. M., Warren W., Hoekzema K., Gordon D., et al. (2017). Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 27 (5), 677–685. 10.1101/gr.214007.116 PubMed DOI PMC
Jebb D., Huang Z., Pippel M., Hughes G. M., Lavrichenko K., Devanna P., et al. (2020). Six reference-quality genomes reveal evolution of bat adaptations. Nature 583 (7817), 578–584. 10.1038/s41586-020-2486-3 PubMed DOI PMC
Kaushik R., Arya A., Kumar D., Goel A., Rout P. K. (2023). Genetic studies of heat stress regulation in goat during hot climatic condition. J. Therm. Biol. 113, 103528. 10.1016/j.jtherbio.2023.103528 PubMed DOI
Ketz-Riley C., Ritchey J., Hoover J., Johnson C., Barrie M. (2003). Immunodeficiency associated with multiple concurrent infections in captive Pallas’ cats (Otocolobus manul). J. zoo Wildl. Med. official Publ. Am. Assoc. Zoo Veterinarians 34, 239–245. 10.1638/01-112 PubMed DOI
Khorozyan I., Ananian V., Malkhasyan A. (2021). No longer regionally extinct: a review of Pallas’s Cat Otocolobus manul records from the Caucasus with a new record from Armenia (Mammalia: felidae). Zoology Middle East 67 (1), 12–18. 10.1080/09397140.2020.1865663 DOI
Kitchener A. C. (2017). A revised taxonomy of the felidae. The final report of the cat classification task force of the IUCN/SSC cat specialist group. Cat. News 11.
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., et al. (2009). Circos: an information aesthetic for comparative genomics. Genome Res. 19 (9), 1639–1645. 10.1101/gr.092759.109 PubMed DOI PMC
Lawrence E. S., Gu W., Bohlender R. J., Anza-Ramirez C., Cole A. M., Yu J. J., et al. (2024). Functional EPAS1/HIF2A missense variant is associated with hematocrit in Andean highlanders. Sci. Adv. 10 (6), eadj5661. 10.1126/sciadv.adj5661 PubMed DOI PMC
Lee C. Y., Hsieh P. H., Chiang L. M., Chattopadhyay A., Li K. Y., Lee Y. F., et al. (2018). Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant. Gigascience 7 (5), giy044. 10.1093/gigascience/giy044 PubMed DOI PMC
Lee F. S. (2024). Hypoxia Inducible Factor pathway proteins in high-altitude mammals. Trends Biochem. Sci. 49 (1), 79–92. 10.1016/j.tibs.2023.11.002 PubMed DOI PMC
Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25 (14), 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Meurs K. M., Montgomery K., Friedenberg S. G., Williams B., Gilger B. C. (2021). A defect in the NOG gene increases susceptibility to spontaneous superficial chronic corneal epithelial defects (SCCED) in boxer dogs. BMC Vet. Res. 17, 254. 10.1186/s12917-021-02955-1 PubMed DOI PMC
Naessens J., Teale A. J., Sileghem M. (2002). Identification of mechanisms of natural resistance to African trypanosomiasis in cattle. Veterinary Immunol. Immunopathol. 87 (3), 187–194. 10.1016/S0165-2427(02)00070-3 PubMed DOI
Nielsen R. (2005). Molecular signatures of natural selection. Annu. Rev. Genet. 39, 197–218. 10.1146/annurev.genet.39.073003.112420 PubMed DOI
Peel E., Silver L., Brandies P., Zhu Y., Cheng Y., Hogg C. J., et al. (2022). Best genome sequencing strategies for annotation of complex immune gene families in wildlife. GigaScience 11, giac100. 10.1093/gigascience/giac100 PubMed DOI PMC
Pei Y., Leng L., Sun W., Liu B., Feng X., Li X., et al. (2024). Whole-genome sequencing in medicinal plants: current progress and prospect. Sci. China Life Sci. 67 (2), 258–273. 10.1007/s11427-022-2375-y PubMed DOI
Peng X., Cheng J., Li H., Feijó A., Xia L., Ge D., et al. (2023). Whole-genome sequencing reveals adaptations of hairy-footed jerboas (Dipus, Dipodidae) to diverse desert environments. BMC Biol. 21, 182. 10.1186/s12915-023-01680-5 PubMed DOI PMC
Prokop J. W., May T., Strong K., Bilinovich S. M., Bupp C., Rajasekaran S., et al. (2018). Genome sequencing in the clinic: the past, present, and future of genomic medicine. Physiol. Genomics 50 (8), 563–579. 10.1152/physiolgenomics.00046.2018 PubMed DOI PMC
Robinson J. J., Crichlow A. D., Hacker C. E., Munkhtsog B., Munkhtsog B., Zhang Y., et al. (2024). Genetic variation in the Pallas’s cat (Otocolobus manul) in zoo-managed and wild populations. Diversity 16 (4), 228. 10.3390/d16040228 DOI
Ross S. (2019). The behaviour and ecology of the manul. Cat. News, Spec. Issue 13, 9–13.
Ross S., Barashkova A., Dhendup T., Munkhtsog B., Smelansky I., Barclay D., et al. (2020). Otocolobus manul (errata version published in 2020). IUCN Red List Threat. Species. e.T15640A180145377. 10.2305/IUCN.UK.2020-2.RLTS.T15640A180145377.en DOI
Schmidt C., Hoban S., Hunter M., Paz-Vinas I., Garroway C. J. (2023). Genetic diversity and IUCN red list status. Conserv. Biol. 37 (4), e14064. 10.1111/cobi.14064 PubMed DOI
Schmidt T. L., Jasper M. E., Weeks A. R., Hoffmann A. A. (2021). Unbiased population heterozygosity estimates from genome-wide sequence data. Methods Ecol. Evol. 12 (10), 1888–1898. 10.1111/2041-210X.13659 DOI
Schweizer R. M., Velotta J. P., Ivy C. M., Jones M. R., Muir S. M., Bradburd G. S., et al. (2019). Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLOS Genet. 15 (11), e1008420. 10.1371/journal.pgen.1008420 PubMed DOI PMC
Sim N. L., Kumar P., Hu J., Henikoff S., Schneider G., Ng P. C. (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40 (W1), W452–W457. 10.1093/nar/gks539 PubMed DOI PMC
Sims D., Sudbery I., Ilott N. E., Heger A., Ponting C. P. (2014). Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15 (2), 121–132. 10.1038/nrg3642 PubMed DOI
Sliwa A. (2013). “Felis nigripes,” in The mammals of africa. Volume V: carnivores, pangolins, equids and rhinoceroses. Editors Kingdon J., Hoffmann M. (London: Bloomsbury Publishing; ). The Mammals of Africa(Volume V: Carnivores, Pangolins, Equids and Rhinoceroses).
Storz J. F., Scott G. R. (2021). Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 253, 110865. 10.1016/j.cbpa.2020.110865 PubMed DOI PMC
Thompson J. D., Higgins D. G., Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (22), 4673–4680. 10.1093/nar/22.22.4673 PubMed DOI PMC
van der Valk T., Jensen A., Caillaud D., Guschanski K. (2024). Comparative genomic analyses provide new insights into evolutionary history and conservation genomics of gorillas. BMC Ecol. Evol. 24, 14. 10.1186/s12862-023-02195-x PubMed DOI PMC
Verta J. P., Jacobs A. (2022). The role of alternative splicing in adaptation and evolution. Trends Ecol. and Evol. 37 (4), 299–308. 10.1016/j.tree.2021.11.010 PubMed DOI
Wang K., Li M., Hakonarson H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38 (16), e164. 10.1093/nar/gkq603 PubMed DOI PMC
Werhahn G., Kusi N., Karmacharya D., Man Sherchan A., Manandhar P., Manandhar S., et al. (2018). Eurasian lynx and Pallas’s cat in Dolpa district of Nepal: genetics, distribution and diet. Cat. News 67.
Westbury M. V., Hartmann S., Barlow A., Wiesel I., Leo V., Welch R., et al. (2018). Extended and continuous decline in effective population size results in low genomic diversity in the world’s rarest hyena species, the Brown hyena. Mol. Biol. Evol. 35 (5), 1225–1237. 10.1093/molbev/msy037 PubMed DOI PMC
Wright B. R., Farquharson K. A., McLennan E. A., Belov K., Hogg C. J., Grueber C. E. (2020). A demonstration of conservation genomics for threatened species management. Mol. Ecol. Resour. 20 (6), 1526–1541. 10.1111/1755-0998.13211 PubMed DOI
Xia X., Zhang S., Zhang H., Zhang Z., Chen N., Li Z., et al. (2021). Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data. BMC Genomics 22, 43. 10.1186/s12864-020-07340-0 PubMed DOI PMC
Yu L., Wang G. D., Ruan J., Chen Y. B., Yang C. P., Cao X., et al. (2016). Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat. Genet. 48 (8), 947–952. 10.1038/ng.3615 PubMed DOI