The pentose phosphate pathway controls oxidative protein folding and prevents ferroptosis in chondrocytes
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
39794539
PubMed Central
PMC11774761
DOI
10.1038/s42255-024-01187-5
PII: 10.1038/s42255-024-01187-5
Knihovny.cz E-resources
- MeSH
- Chondrocytes * metabolism MeSH
- Ferroptosis * MeSH
- Glucosephosphate Dehydrogenase metabolism genetics MeSH
- Glucose metabolism MeSH
- Proteostasis MeSH
- Mice MeSH
- Oxidation-Reduction MeSH
- Oxidative Stress MeSH
- Pentose Phosphate Pathway * physiology MeSH
- Reactive Oxygen Species metabolism MeSH
- Protein Folding * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glucosephosphate Dehydrogenase MeSH
- Glucose MeSH
- Reactive Oxygen Species MeSH
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification. Loss of glucose-6-phosphate dehydrogenase in chondrocytes does not affect cell proliferation because reversal of the non-oxidative PPP produces ribose-5-phosphate. However, the decreased NADPH production reduces glutathione recycling, resulting in decreased protection against the reactive oxygen species (ROS) produced during oxidative protein folding. The disturbed proteostasis activates the unfolded protein response and protein degradation. Moreover, the oxidative stress induces ferroptosis, which, together with altered matrix properties, results in a chondrodysplasia phenotype. Collectively, these data show that in hypoxia, the PPP is crucial to produce reducing power that confines ROS generated by oxidative protein folding and thereby controls proteostasis and prevents ferroptosis.
Center for Biotechnology Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
Laboratory of Translational Genetics VIB Center for Cancer Biology Leuven Belgium
VIB Bioimaging Core Leuven Center for Brain and Disease Research Leuven Belgium
VIB Bioimaging Core Leuven Department of Neurosciences KU Leuven Leuven Belgium
See more in PubMed
Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell168, 657–669 (2017). PubMed PMC
Stegen, S. & Carmeliet, G. Metabolic regulation of skeletal cell fate and function. Nat. Rev. Endocrinol.20, 399–413 (2024). PubMed
Schipani, E. et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev.15, 2865–2876 (2001). PubMed PMC
Stegen, S. et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature565, 511–515 (2019). PubMed PMC
van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature579, 111–117 (2020). PubMed PMC
Yao, Q. et al. Suppressing mitochondrial respiration is critical for hypoxia tolerance in the fetal growth plate. Dev. Cell49, 748–763.e7 (2019). PubMed PMC
Stegen, S. et al. De novo serine synthesis regulates chondrocyte proliferation during bone development and repair. Bone Res.10, 14 (2022). PubMed PMC
Stegen, S. et al. Glutamine metabolism controls chondrocyte identity and function. Dev. Cell53, 530–544.e8 (2020). PubMed
Hosios, A. M. & Vander Heiden, M. G. The redox requirements of proliferating mammalian cells. J. Biol. Chem.293, 7490–7498 (2018). PubMed PMC
Gansemer, E. R. & Rutkowski, D. T. Pathways linking nicotinamide adenine dinucleotide phosphate production to endoplasmic reticulum protein oxidation and stress. Front. Mol. Biosci.9, 858142 (2022). PubMed PMC
Zhang, L. et al. Biochemical basis and metabolic interplay of redox regulation. Redox Biol.26, 101284 (2019). PubMed PMC
Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol.21, 421–438 (2020). PubMed PMC
Wang, W. et al. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development136, 4143–4153 (2009). PubMed PMC
Kondo, S., Saito, A., Asada, R., Kanemoto, S. & Imaizumi, K. Physiological unfolded protein response regulated by OASIS family members, transmembrane bZIP transcription factors. IUBMB Life63, 233–239 (2011). PubMed
Cameron, T. L. et al. Cartilage-specific ablation of XBP1 signaling in mouse results in a chondrodysplasia characterized by reduced chondrocyte proliferation and delayed cartilage maturation and mineralization. Osteoarthritis Cartilage23, 661–670 (2015). PubMed
Hisanaga, S. et al. PERK-mediated translational control is required for collagen secretion in chondrocytes. Sci. Rep.8, 773 (2018). PubMed PMC
Lui, J. C. et al. Spatial and temporal regulation of gene expression in the mammalian growth plate. Bone46, 1380–1390 (2010). PubMed PMC
Leijten, J. C. et al. Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum.64, 3302–3312 (2012). PubMed
Chau, M. et al. Gene expression profiling reveals similarities between the spatial architectures of postnatal articular and growth plate cartilage. PLoS ONE9, e103061 (2014). PubMed PMC
Mizuhashi, K., Nagata, M., Matsushita, Y., Ono, W. & Ono, N. Growth plate borderline chondrocytes behave as transient mesenchymal precursor cells. J. Bone Miner. Res.34, 1387–1392 (2019). PubMed PMC
Holzer, T. et al. Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases. J. Cell Biol.218, 1853–1870 (2019). PubMed PMC
Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol.9, 944–957 (2008). PubMed PMC
Long, F. & Ornitz, D. M. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol.5, a008334 (2013). PubMed PMC
Myllyharju, J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann. Med.40, 402–417 (2008). PubMed
Dixon, S. J. & Olzmann, J. A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol.25, 424–442 (2024). PubMed
TeSlaa, T., Ralser, M., Fan, J. & Rabinowitz, J. D. The pentose phosphate pathway in health and disease. Nat. Metab.5, 1275–1289 (2023). PubMed PMC
Shergalis, A. G., Hu, S., Bankhead, A. 3rd & Neamati, N. Role of the ERO1–PDI interaction in oxidative protein folding and disease. Pharmacol. Ther.210, 107525 (2020). PubMed PMC
Stegen, S. et al. HIF-1α promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab.23, 265–279 (2016). PubMed PMC
Loopmans, S., Tournaire, G., Stockmans, I., Stegen, S. & Carmeliet, G. Hypoxia rewires glucose and glutamine metabolism in different sources of skeletal stem and progenitor cells similarly, except for pyruvate. J. Bone Miner. Res.39, 150–160 (2024). PubMed
Wang, L. & Wang, C. C. Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends Biochem. Sci.48, 40–52 (2023). PubMed
Cerf, M. E. Beta cell dysfunction and insulin resistance. Front. Endocrinol (Lausanne)4, 37 (2013). PubMed PMC
Zhou, Z., Xu, M. J. & Gao, B. Hepatocytes: a key cell type for innate immunity. Cell. Mol. Immunol.13, 301–315 (2016). PubMed PMC
von Krusenstiern, A. N. et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol.19, 719–730 (2023). PubMed PMC
Ovchinnikov, D. A., Deng, J. M., Ogunrinu, G. & Behringer, R. R. Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis26, 145–146 (2000). PubMed
Taverna, F. et al. BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization. Nucleic Acids Res.48, W385–W394 (2020). PubMed PMC
Chen, M. Z. et al. A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat. Commun.8, 474 (2017). PubMed PMC
Maher, P. Proteasome assay in cell lysates. Bio Protoc.4, e1028 (2014). PubMed PMC
Cao, J. et al. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat. Commun.11, 1251 (2020). PubMed PMC