• This record comes from PubMed

The pentose phosphate pathway controls oxidative protein folding and prevents ferroptosis in chondrocytes

. 2025 Jan ; 7 (1) : 182-195. [epub] 20250110

Language English Country Germany Media print-electronic

Document type Journal Article

Links

PubMed 39794539
PubMed Central PMC11774761
DOI 10.1038/s42255-024-01187-5
PII: 10.1038/s42255-024-01187-5
Knihovny.cz E-resources

Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification. Loss of glucose-6-phosphate dehydrogenase in chondrocytes does not affect cell proliferation because reversal of the non-oxidative PPP produces ribose-5-phosphate. However, the decreased NADPH production reduces glutathione recycling, resulting in decreased protection against the reactive oxygen species (ROS) produced during oxidative protein folding. The disturbed proteostasis activates the unfolded protein response and protein degradation. Moreover, the oxidative stress induces ferroptosis, which, together with altered matrix properties, results in a chondrodysplasia phenotype. Collectively, these data show that in hypoxia, the PPP is crucial to produce reducing power that confines ROS generated by oxidative protein folding and thereby controls proteostasis and prevents ferroptosis.

See more in PubMed

Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell168, 657–669 (2017). PubMed PMC

Stegen, S. & Carmeliet, G. Metabolic regulation of skeletal cell fate and function. Nat. Rev. Endocrinol.20, 399–413 (2024). PubMed

Schipani, E. et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev.15, 2865–2876 (2001). PubMed PMC

Stegen, S. et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature565, 511–515 (2019). PubMed PMC

van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature579, 111–117 (2020). PubMed PMC

Yao, Q. et al. Suppressing mitochondrial respiration is critical for hypoxia tolerance in the fetal growth plate. Dev. Cell49, 748–763.e7 (2019). PubMed PMC

Stegen, S. et al. De novo serine synthesis regulates chondrocyte proliferation during bone development and repair. Bone Res.10, 14 (2022). PubMed PMC

Stegen, S. et al. Glutamine metabolism controls chondrocyte identity and function. Dev. Cell53, 530–544.e8 (2020). PubMed

Hosios, A. M. & Vander Heiden, M. G. The redox requirements of proliferating mammalian cells. J. Biol. Chem.293, 7490–7498 (2018). PubMed PMC

Gansemer, E. R. & Rutkowski, D. T. Pathways linking nicotinamide adenine dinucleotide phosphate production to endoplasmic reticulum protein oxidation and stress. Front. Mol. Biosci.9, 858142 (2022). PubMed PMC

Zhang, L. et al. Biochemical basis and metabolic interplay of redox regulation. Redox Biol.26, 101284 (2019). PubMed PMC

Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol.21, 421–438 (2020). PubMed PMC

Wang, W. et al. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development136, 4143–4153 (2009). PubMed PMC

Kondo, S., Saito, A., Asada, R., Kanemoto, S. & Imaizumi, K. Physiological unfolded protein response regulated by OASIS family members, transmembrane bZIP transcription factors. IUBMB Life63, 233–239 (2011). PubMed

Cameron, T. L. et al. Cartilage-specific ablation of XBP1 signaling in mouse results in a chondrodysplasia characterized by reduced chondrocyte proliferation and delayed cartilage maturation and mineralization. Osteoarthritis Cartilage23, 661–670 (2015). PubMed

Hisanaga, S. et al. PERK-mediated translational control is required for collagen secretion in chondrocytes. Sci. Rep.8, 773 (2018). PubMed PMC

Lui, J. C. et al. Spatial and temporal regulation of gene expression in the mammalian growth plate. Bone46, 1380–1390 (2010). PubMed PMC

Leijten, J. C. et al. Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum.64, 3302–3312 (2012). PubMed

Chau, M. et al. Gene expression profiling reveals similarities between the spatial architectures of postnatal articular and growth plate cartilage. PLoS ONE9, e103061 (2014). PubMed PMC

Mizuhashi, K., Nagata, M., Matsushita, Y., Ono, W. & Ono, N. Growth plate borderline chondrocytes behave as transient mesenchymal precursor cells. J. Bone Miner. Res.34, 1387–1392 (2019). PubMed PMC

Holzer, T. et al. Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases. J. Cell Biol.218, 1853–1870 (2019). PubMed PMC

Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol.9, 944–957 (2008). PubMed PMC

Long, F. & Ornitz, D. M. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol.5, a008334 (2013). PubMed PMC

Myllyharju, J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann. Med.40, 402–417 (2008). PubMed

Dixon, S. J. & Olzmann, J. A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol.25, 424–442 (2024). PubMed

TeSlaa, T., Ralser, M., Fan, J. & Rabinowitz, J. D. The pentose phosphate pathway in health and disease. Nat. Metab.5, 1275–1289 (2023). PubMed PMC

Shergalis, A. G., Hu, S., Bankhead, A. 3rd & Neamati, N. Role of the ERO1–PDI interaction in oxidative protein folding and disease. Pharmacol. Ther.210, 107525 (2020). PubMed PMC

Stegen, S. et al. HIF-1α promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab.23, 265–279 (2016). PubMed PMC

Loopmans, S., Tournaire, G., Stockmans, I., Stegen, S. & Carmeliet, G. Hypoxia rewires glucose and glutamine metabolism in different sources of skeletal stem and progenitor cells similarly, except for pyruvate. J. Bone Miner. Res.39, 150–160 (2024). PubMed

Wang, L. & Wang, C. C. Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends Biochem. Sci.48, 40–52 (2023). PubMed

Cerf, M. E. Beta cell dysfunction and insulin resistance. Front. Endocrinol (Lausanne)4, 37 (2013). PubMed PMC

Zhou, Z., Xu, M. J. & Gao, B. Hepatocytes: a key cell type for innate immunity. Cell. Mol. Immunol.13, 301–315 (2016). PubMed PMC

von Krusenstiern, A. N. et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol.19, 719–730 (2023). PubMed PMC

Ovchinnikov, D. A., Deng, J. M., Ogunrinu, G. & Behringer, R. R. Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis26, 145–146 (2000). PubMed

Taverna, F. et al. BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization. Nucleic Acids Res.48, W385–W394 (2020). PubMed PMC

Chen, M. Z. et al. A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat. Commun.8, 474 (2017). PubMed PMC

Maher, P. Proteasome assay in cell lysates. Bio Protoc.4, e1028 (2014). PubMed PMC

Cao, J. et al. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat. Commun.11, 1251 (2020). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...