In silico validation of non-invasive arterial compliance estimation and potential determinants of its variability

. 2024 Dec 31 ; 73 (S3) : S771-S780.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39808177

Arterial compliance (AC) is an important cardiovascular parameter characterizing mechanical properties of arteries. AC is significantly influenced by arterial wall structure and vasomotion, and it markedly influences cardiac load. A new method, based on a two-element Windkessel model, has been recently proposed for estimating AC as the ratio of the time constant T of the diastolic blood pressure decay and peripheral vascular resistance derived from clinically available stroke volume measurements and selected peripheral blood pressure parameters which are less prone to peripheral distortions. The aim of this study was to validate AC estimation using a virtual population generated by in silico model of the systemic arterial tree. In the second part of study, we analysed causal coupling between AC oscillations and variability of its potential determinants - systolic blood pressure and heart rate in healthy young human subjects. The pool of virtual subjects (n=3818) represented an extensive AC distribution. AC was estimated from the peripheral blood pressure curve and by the standard method from the aortic blood pressure curve. The proposed method slightly overestimated AC set in the model but both ACs were strongly correlated (r=0.94, p<0.001). In real data, we observed that AC dynamics was coupled with basic cardiovascular parameters variability independently of the autonomic nervous system state. In silico analysis suggests that AC can be reliably estimated by noninvasive method. The analysis of short-term AC variability together with its determinants could improve our understanding of factors involved in AC dynamics potentially improving assessment of AC changes associated with atherosclerosis process. Key words Arterial compliance, Cardiovascular model, Arterial blood pressure, Causal analysis, Volume-clamp photoplethysmography.

Zobrazit více v PubMed

Klabunde R. Cardiovascular Physiology Concepts. Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011. p. 243.

Westerhof N, Stergiopulos N, Noble MI, Westerhof BE. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education. Springer; 2018. p. 314. DOI

Monge Garcia MI, Santos A. Understanding ventriculo-arterial coupling. Ann Transl Med. 2020;8:795. doi: 10.21037/atm.2020.04.10. PubMed DOI PMC

Butlin M, Tan I, Spronck B, Avolio AP. Measuring Arterial Stiffness in Animal Experimental Studies. Arterioscler Thromb Vasc Biol. 2020;40:1068–1077. doi: 10.1161/ATVBAHA.119.313861. PubMed DOI PMC

O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Cardiol. 2007;50:1–13. doi: 10.1016/j.jacc.2006.12.050. PubMed DOI

Hasegawa M, Rodbard S. Effect of posture on arterial pressures, timing of the arterial sounds and pulse wave velocities in the extremities. Cardiology. 1979;64:122–132. doi: 10.1159/000170585. PubMed DOI

Huijben AM, Mattace-Raso FU, Deinum J, Lenders J, van den Meiracker AH. Aortic augmentation index and pulse wave velocity in response to head-up tilting: effect of autonomic failure. J Hypertens. 2012;30:307–314. doi: 10.1097/HJH.0b013e32834f09ee. PubMed DOI

Matsumura K, Noguchi H, Rolfe P, Yamakoshi T, Matsuoka Y. Differential Effect of Two Mental Stress Tasks on Arterial Stiffness. Japan Psychol Res. 2019;61:249–261. doi: 10.1111/jpr.12235. DOI

McEniery CM, Yasmin Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT) J Am Coll Cardiol. 2005;46:1753–1760. doi: 10.1016/j.jacc.2005.07.037. PubMed DOI

Vlachopoulos C, Kosmopoulou F, Alexopoulos N, Ioakeimidis N, Siasos G, Stefanadis C. Acute mental stress has a prolonged unfavorable effect on arterial stiffness and wave reflections. Psychosom Med. 2006;68:231–237. doi: 10.1097/01.psy.0000203171.33348.72. PubMed DOI

Svec D, Czippelova B, Cernanova Krohova J, Mazgutova N, Wiszt R, Turianikova Z, Matuskova L, Javorka M. Short-term arterial compliance changes in the context of systolic blood pressure influence. Physiol Res. 2021;70(Suppl 3):S339–S348. doi: 10.33549/physiolres.934838. PubMed DOI PMC

Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, Lecarpentier Y. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500–H505. doi: 10.1152/ajpheart.1998.274.2.H500. PubMed DOI

Nagai Y, Helwegen J, Fleg JL, Beemer MK, Earley CJ, Metter EJ. Associations of aortic Windkessel function with age, gender and cardiovascular risk factors. Ultrasound Med Biol. 2001;27:1207–1210. doi: 10.1016/S0301-5629(01)00445-8. PubMed DOI

Arai T, Lee K, Stenger MB, Platts SH, Meck JV, Cohen RJ. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts. Acta Astronautica. 2011;68:770–777. doi: 10.1016/j.actaastro.2010.10.008. DOI

Svec D, Javorka M. Noninvasive arterial compliance estimation. Physiol Res. 2021;70(Suppl 4):S483–S494. doi: 10.33549/physiolres.934798. PubMed DOI PMC

Arai T, Lee K, Cohen R. A novel algorithm to continuously monitor change of total peripheral resistance using peripheral arterial blood pressure values for prediction of orthostatic intolerance. Proceedings of the International Astronautical Congress Glasgow; 2008.

Reymond P, Merenda F, Perren F, Rufenacht D, Stergiopulos N. Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol. 2009;297:H208–H222. doi: 10.1152/ajpheart.00037.2009. PubMed DOI

Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol. 2011;301:H1173–H1182. doi: 10.1152/ajpheart.00821.2010. PubMed DOI

Devereux RB, de Simone G, Arnett DK, Best LG, Boerwinkle E, Howard BV, Kitzman D, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons >/=15 years of age. Am J Cardiol. 2012;110:1189–1194. doi: 10.1016/j.amjcard.2012.05.063. PubMed DOI PMC

Langewouters GJ. Visco-elasticity of the Human Aorta in Vitro in Relation to Pressure and Age. Krips Repro. 1982:221.

Lu Z, Mukkamala R. Continuous cardiac output monitoring in humans by invasive and noninvasive peripheral blood pressure waveform analysis. J Appl Physiol (1985) 2006;101:598–608. doi: 10.1152/japplphysiol.01488.2005. PubMed DOI

Segers P, Rietzschel ER, De Buyzere ML, Stergiopulos N, Westerhof N, Van Bortel LM, Gillebert T, Verdonck PR. Three- and four-element Windkessel models: assessment of their fitting performance in a large cohort of healthy middle-aged individuals. Proc Inst Mech Eng H. 2008;222:417–428. doi: 10.1243/09544119JEIM287. PubMed DOI

Wolak A, Gransar H, Thomson LE, Friedman JD, Hachamovitch R, Gutstein A, Shaw LJ, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC Cardiovasc Imaging. 2008;1:200–209. doi: 10.1016/j.jcmg.2007.11.005. PubMed DOI

Bordin Pelazza B, Filho SRF. Comparison between Central and Brachial Blood Pressure in Hypertensive Elderly Women and Men. Int J Hypertens. 2017;2017:6265823. doi: 10.1155/2017/6265823. PubMed DOI PMC

Bikia V, Rovas G, Pagoulatou S, Stergiopulos N. Corrigendum: Determination of aortic characteristic impedance and total arterial compliance from regional pulse wave velocities using machine learning: an in silico study. Front Bioeng Biotechnol. 2024;12:1345502. doi: 10.3389/fbioe.2024.1345502. PubMed DOI PMC

Baselli G, Porta A, Rimoldi O, Pagani M, Cerutti S. Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Trans Biomed Eng. 1997;44:1092–1101. doi: 10.1109/10.641336. PubMed DOI

Pernice R, Sparacino L, Nollo G, Stivala S, Busacca A, Faes L. Comparison of frequency domain measures based on spectral decomposition for spontaneous baroreflex sensitivity assessment after Acute Myocardial Infarction. Biomed Signal Process Control. 2021;68:102680. doi: 10.1016/j.bspc.2021.102680. DOI

Sparacino L, Pernice R, Barà C, Švec D, Javorka M, Faes L. Spectral analysis of the beat-to-beat variability of arterial compliance. 2022 12th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO); 9–12 Oct 2022; DOI

Krohova J, Faes L, Czippelova B, Pernice R, Turianikova Z, Wiszt R, Mazgutova N, Busacca A, Javorka M. Vascular resistance arm of the baroreflex: methodology and comparison with the cardiac chronotropic arm. J Appl Physiol (1985) 2020;128:1310–1320. doi: 10.1152/japplphysiol.00512.2019. PubMed DOI

Sparacino L, Antonacci Y, Bara C, Svec D, Javorka M, Faes L. A method to assess linear self-predictability of physiologic processes in the frequency domain: application to beat-to-beat variability of arterial compliance. Front Netw Physiol. 2024;4:1346424. doi: 10.3389/fnetp.2024.1346424. PubMed DOI PMC

Nardone M, Incognito AV, Millar PJ. Evidence for Pressure-Independent Sympathetic Modulation of Central Pulse Wave Velocity. J Am Heart Assoc. 2018;7:e007971. doi: 10.1161/JAHA.117.007971. PubMed DOI PMC

O’Leary DD, Kimmerly DS, Cechetto AD, Shoemaker JK. Differential effect of head-up tilt on cardiovagal and sympathetic baroreflex sensitivity in humans. Exp Physiol. 2003;88:769–774. doi: 10.1113/eph8802632. PubMed DOI

Javorka M, Czippelova B, Turianikova Z, Lazarova Z, Tonhajzerova I, Faes L. Causal analysis of short-term cardiovascular variability: state-dependent contribution of feedback and feedforward mechanisms. Med Biol Eng Comput. 2017;55:179–190. doi: 10.1007/s11517-016-1492-y. PubMed DOI

Janssen BJ, Malpas SC, Burke SL, Head GA. Frequency-dependent modulation of renal blood flow by renal nerve activity in conscious rabbits. Am J Physiol. 1997;273:R597–R608. doi: 10.1152/ajpregu.1997.273.2.R597. PubMed DOI

Stergiopulos N, Westerhof N. Determinants of pulse pressure. Hypertension. 1998;32:556–559. doi: 10.1161/01.HYP.32.3.556. PubMed DOI

Cohen J, Pignanelli C, Burr J. The Effect of Body Position on Measures of Arterial Stiffness in Humans. J Vasc Res. 2020;57:143–151. doi: 10.1159/000506351. PubMed DOI

Lantelme P, Mestre C, Lievre M, Gressard A, Milon H. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension. 2002;39:1083–1087. doi: 10.1161/01.HYP.0000019132.41066.95. PubMed DOI

Ivanov PC. The New Field of Network Physiology: Building the Human Physiolome. Front Netw Physiol. 2021;1:711778. doi: 10.3389/fnetp.2021.711778. PubMed DOI PMC

Ivanov PC, Liu KKL, Bartsch RP. Focus on the emerging new fields of Network Physiology and Network Medicine. New J Phys. 2016;18:100201. doi: 10.1088/1367-2630/18/10/100201. PubMed DOI PMC

Charleston-Villalobos S, Javorka M, Faes L, Voss A. Editorial: Granger causality and information transfer in physiological systems: basic research and applications. Front Netw Physiol. 2023;3:1284256. doi: 10.3389/fnetp.2023.1284256. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...