• This record comes from PubMed

Optimal parameter identification of photovoltaic systems based on enhanced differential evolution optimization technique

. 2025 Jan 16 ; 15 (1) : 2124. [epub] 20250116

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
TN02000025 National Centre for Energy II Ministry of Education, Youth and Sports
TN02000025 National Centre for Energy II Ministry of Education, Youth and Sports
CZ.10.03.01/00/22_003/0000048 Ministry of the Environment of the Czech Republic
CZ.10.03.01/00/22_003/0000048 Ministry of the Environment of the Czech Republic

Links

PubMed 39820510
PubMed Central PMC11739471
DOI 10.1038/s41598-025-85115-x
PII: 10.1038/s41598-025-85115-x
Knihovny.cz E-resources

Identifying the parameters of a solar photovoltaic (PV) model optimally, is necessary for simulation, performance assessment, and design verification. However, precise PV cell modelling is critical for design due to many critical factors, such as inherent nonlinearity, existing complexity, and a wide range of model parameters. Although different researchers have recently proposed several effective techniques for solar PV system parameter identification, it is still an interesting challenge for researchers to enhance the accuracy of the PV system modelling. With the above motivation, this article suggests a stage-specific mutation strategy for the proposed enhanced differential evolution (EDE) that adopts a better search process to arrive at optimal solutions by adaptively varying the mutation factor and crossover rate at different search stages. The optimal identification of PV systems is formulated as a single objective function. It appears in the form of the Root Mean Square Error (RMSE) between the PV model current from the experimental data and the current calculated using the identified parameters considering the parameter constraints (limits). The I-V (current-voltage) characteristics/data with identified parameters are validated with the experimental data to justify the proposed approach's accuracy and efficacy for different cells and modules. Extensive simulation has been demonstrated considering two different PV cells (RTC France & PVM-752-GaAs) and three different PV modules (ND-R250A5, STM6 40/36 & STP6 120/36). The results obtained from the proposed EDE technique show Root Mean Square Errors (RMSE) of 7.730062e-4, 7.419648e-4, and 7.33228e-4 respectively, in parameter identification of RTC France PV cell models based on single, double, and triple diodes. Also, the RMSE involved in parameter identification of PVM-752-GaAs PV cell models based on single, double, and triple diodes are 1.59256e-4, 1.408989e-4, and 1.30181e-4, respectively. The parameters identification of ND-R250A5, STM6 40/36 and STP6 120/36 PV modules involve RMSE values of 7.697716e-3, 1.772095e-3, and 1.224258e-2, respectively. All these RMSE values obtained with proposed EDE are the least as compared to other well-accepted algorithms, thereby justifying its higher accuracy.

See more in PubMed

Jordehi, A. R. Parameter estimation of solar photovoltaic (PV) cells: a review, renew. Sustain. Energy Rev.61, 354–371 (2016).

Abbassi, R., Abbassi, A., Jemli, M. & Chebbi, S. Identification of unknown parameters of solar cell models: a comprehensive overview of available approaches, renew. Sustain. Energy Rev.90, 453–474 (2018).

Toledo, F. J. & Blanes, J. M. Analytical and quasi-explicit four arbitrary point method for extraction of solar cell single-diode model parameters. Renew. Energy. 92, 346–356 (2016).

Cubas, J., Pindado, S. & Victoria, M. On the analytical approach for modeling photovoltaic systems behavior. J. Power Sources. 247, 467–474 (2014).

Jain, A., Sharma, S. & Kapoor, A. Solar cell array parameters using Lambert W-function. Sol Energy Mater. Sol Cells. 90(1), 25–31 (2006).

Ortiz-Conde, A., Sánchez, F. J. G. & Muci, J. New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics. Sol Energy Mater. Sol Cells90(3), 352–361 (2006).

Bencherif, M. & Brahmi, N. Solar cell parameter identification using the three main points of the current–voltage characteristic. Int. J. Ambient Energy. 43(1), 3064–3084 (2022).

Easwarakhanthan, T., Bottin, J., Bouhouch, I. & Boutrit, C. Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int. J. Sol Energy. 4(1), 1–12 (1986).

Liu, S. & Dougal, R. A. Dynamic multiphysics model for solar array. IEEE Trans. Energy Convers.17(2), 285–294 (2002).

Villalva, M. G., Gazoli, J. R. & Filho, E. R. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron.24(5), 1198–1208 (2009).

Abdulrazzaq, A. K., Bognár, G. & Plesz, B. Accurate method for PV solar cells and modules parameters extraction using I–V curves. J. King Saud University-Engineering Sci.34(1), 46–56 (2022).

Zagrouba, M., Sellami, A., Bouaïcha, M. & Ksouri, M. Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol Energy84(5), 860–866 (2010).

Askarzadeh, A. & Rezazadeh, A. Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy. 102, 943–949 (2013).

AlHajri, M. F., El-Naggar, K. M., AlRashidi, M. R. & Al-Othman, A. K. Optimal extraction of Solar Cell parameters using pattern search, renew. Energy44, 238–245 (2012).

Soon, J. J. & Low, K. S. Photovoltaic model identification using particle swarm optimization with inverse barrier constraint. IEEE Trans. Power Electron.27(9), 3975–3983 (2012).

Askarzadeh, A. & Rezazadeh, A. Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Sol. Energy90, 123–133 (2013).

Yuan, X., Xiang, Y. & He, Y. Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm. Sol Energy. 108, 238–251 (2014).

Yu, S. et al. Solar photovoltaic model parameter estimation based on orthogonally-adapted gradient-based optimization. Optik252, 168513 (2022).

Saadaoui, D., Elyaqouti, M., Assalaou, K. & Lidaighbi, S. Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation. Energy Convers. Manag.12, 100129 (2021).

Khelifa, M. A., Lekouaghet, B. & Boukabou, A. Symmetric chaotic gradient-based optimizer algorithm for efficient estimation of PV parameters. Optik259, 168873 (2022).

Nunes, H. G. G., Pombo, J. A. N., Mariano, S. J. P. S., Calado, M. R. A. & De Souza, J. F. A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl. Energy. 211, 774–791 (2018).

Gnetchejo, P. J. et al. Enhanced vibrating particles system algorithm for parameters estimation of photovoltaic system. J. Power Energy Eng.7(8), 1 (2019).

Ramadan, A. E., Kamel, S., Khurshaid, T., Oh, S. R. & Rhee, S. B. Parameter extraction of three diode solar photovoltaic model using improved grey wolf optimizer. Sustainability13(12), p6963 (2021).

Gnetchejo, P. J. et al. Important notes on parameter estimation of solar photovoltaic cell. Energy Convers. Manag. 197, 111870 (2019).

Kumar, C. & Mary, D. M. A novel chaotic-driven tuna swarm optimizer with Newton-Raphson method for parameter identification of three-diode equivalent circuit model of solar photovoltaic cells/modules. Optik264, 169379 (2022).

Shaheen, A. M., El-Seheimy, R. A., Xiong, G., Elattar, E. & Ginidi, A. R. Parameter identification of solar photovoltaic cell and module models via supply demand optimizer. Ain Shams Eng. J.13(4), 101705 (2022).

Diab, A. A. Z. et al. Tree growth based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules. IEEE Access.8, 119668–119687 (2020).

Xiong, G., Zhang, J., Shi, D. & Yuan, X. Application of supply-demand-based optimization for parameter extraction of solar photovoltaic models. Complexity2019, 1–22 (2019).

Cotfas, D. T., Deaconu, A. M. & Cotfas, P. A. Hybrid successive discretisation algorithm used to calculate parameters of the photovoltaic cells and panels for existing datasets. IET Renew. Power Gener. 15(15), 3661–3687 (2021).

Jiang, L. L., Maskell, D. L. & Patra, J. C. Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Appl. Energy. 112, 185–193 (2013).

Rezk, H. & Abdelkareem, M. A. Optimal parameter identification of triple diode model for solar photovoltaic panel and cells. Energy Rep.8, 1179–1188 (2022).

Liu, Y. et al. Boosting slime mould algorithm for parameter identification of photovoltaic models. Energy234, 121164 (2021).

Lidaighbi, S. et al. A new hybrid method to estimate the single-diode model parameters of solar photovoltaic panel. Energy Convers. Manag : X. 15, 100234 (2022).

Oliva, D. et al. A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells. Energies10(7), 865 (2017).

Kang, T., Yao, J., Jin, M., Yang, S. & Duong, T. A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models. Energies11(5), 1060 (2018).

Premkumar, M., Babu, T. S., Umashankar, S. & Sowmya, R. A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik208, 164559 (2020).

Kumar, C., Raj, T. D., Premkumar, M. & Raj, T. D. A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters. Optik223, 165277 (2020).

Izci, D., Ekinci, S., Abualigah, L., Salman, M. & Rashdan, M. Parameter extraction of photovoltaic cell models using electric eel foraging optimizer. Front. Energy Res.12, 1407125 (2024).

Izci, D., Ekinci, S. & Hussien, A. G. Efficient parameter extraction of photovoltaic models with a novel enhanced prairie dog optimization algorithm. Sci. Rep.14, 7945 (2024). PubMed PMC

Abbassi, R. et al. An accurate metaheuristic mountain gazelle optimizer for parameter estimation of single-and double-diode photovoltaic cell models. Mathematics11(22), 4565 (2023).

Abbassi, A. et al. Improved arithmetic optimization algorithm for parameters extraction of photovoltaic solar cell single-diode model. Arab. J. Sci. Eng.47(8), 10435–10451 (2022).

Shaheen, A. M., Ginidi, A. R., El-Sehiemy, R. A. & Ghoneim, S. S. A forensic-based investigation algorithm for parameter extraction of solar cell models. IEEE Access.9, 1–20 (2020).

Abd, E. et al. Optimal parameters extracting fuel cell based gorilla troops optimizer. Fuel332 : 126162. (2023).

Manoharan, P. et al. Parameter characterization of PEM fuel cell mathematical models using an orthogonal learning-based GOOSE algorithm. Sci. Rep.14(1), 20979 (2024). PubMed PMC

Premkumar, M. et al. A reliable optimization framework for parameter identification of single-diode solar photovoltaic model using weighted velocity‐guided grey wolf optimization algorithm and Lambert‐W function. IET Renew. Power Gener.17(11), 2711–2732 (2023).

Beigi, A. M. & Maroosi, A. Parameter identification for solar cells and module using a hybrid Firefly and Pattern Search algorithms. Sol Energy171, 435–446 (2018).

Ram, J. P., Babu, T. S., Dragicevic, T. & Rajasekar, N. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers. Manag. 135, 463–476 (2017).

Nunes, H. G. G., Pombo, J. A. N., Bento, P. M. R., Mariano, S. J. P. S. & Calado, M. R. A. Collaborative swarm intelligence to estimate PV parameters. Energy Convers. Manag. 185, 866–890 (2019).

Ekinci, S., Izci, D. & Hussien, A. G. Comparative analysis of the hybrid gazelle-nelder–mead algorithm for parameter extraction and optimization of solar photovoltaic systems. IET Renew. Power Gener.18(6), 959–978 (2024).

Izci, D. et al. A new modified version of mountain gazelle optimization for parameter extraction of photovoltaic models. Electr. Eng. 1–21 (2024).

Langdon, W. B. & Poli, R. Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Trans. Evol. Comput.11(5), 561–578 (2007).

Tong, N. T. & Pora, W. A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy176, 104–115 (2016).

Fakhouri, H. N. et al. Hybrid four Vector Intelligent Metaheuristic with Differential Evolution for Structural single-objective. Eng. Optim. Algorithms17(9), 417 (2024).

Zhang, X., Zhong, C. & Abualigah, L. Foreign exchange forecasting and portfolio optimization strategy based on hybrid-molecular differential evolution algorithms. Soft. Comput.27(7), 3921–3939 (2023). PubMed PMC

Chakraborty, S. et al. Differential evolution and its applications in image processing problems: a comprehensive review. Arch. Comput. Methods Eng.30(2), 985–1040 (2023). PubMed PMC

Chauhan, S., Govind, V., Kumar, A. & Laith, A. Conglomeration of reptile search algorithm and differential evolution algorithm for optimal designing of FIR filter. Circuits Syst. Signal Process.42(5), 2986–3007 (2023).

Price, K. V. Differential evolution, in (eds Zelinka, I., Snášel, V. & Abraham, A.) Handbook of Optimization: from Classical to Modern Approach 187–214 (Springer, 2013).

Wang, L., Zhou, X., Xie, T., Liu, J. & Zhang, G. Adaptive differential evolution with information entropy-based mutation strategy. IEEE Access.9, 146783–146796 (2021).

Yu, W. J. et al. Differential evolution with two-level parameter adaptation. IEEE Trans. Cybern.44(7), 1080–1099 (2013). PubMed

Li, Y., Wang, S. & Yang, B. An improved differential evolution algorithm with dual mutation strategies collaboration. Expert Syst. Appl.153, 113451 (2020).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...