• This record comes from PubMed

CryoEM structure and small-angle X-ray scattering analyses of porcine retinol-binding protein 3

. 2025 Jan ; 15 (1) : 240180. [epub] 20250122

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
PASIFIC
European Regional Development Fund
Foundation for Polish Science
NIH HHS - United States
MEYS CR

The vertebrate visual cycle hinges on enzymatically converting all-trans-retinol (at-ROL) into 11-cis-retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells. To function effectively, retinoids must shuttle between these two cell types. Retinol-binding protein 3 (RBP3), located in the interphotoreceptor matrix, probably plays a pivotal role in this transport mechanism. Comprised of four retinoid-binding modules, RBP3 also binds fatty acids, potentially aiding retinal function by facilitating the loading and unloading of different retinoids at specific cell types thereby directing the cycle. In this study, we present a 3.67 Å cryoEM structure of porcine RBP3, along with molecular docking analysis and corroborative in-solution small-angle X-ray scattering data for titration of RBP3 with relevant ligands, that also give insights on RBP3 conformational adaptability.

See more in PubMed

Palczewski K, Kiser PD. 2020. Shedding new light on the generation of the visual chromophore. Proc. Natl Acad. Sci. USA 117 , 19629–19638. (10.1073/pnas.2008211117) PubMed DOI PMC

Cioffi CL. 2020. Introduction: overview of the human eye, mammalian retina, and the retinoid visual cycle. In Drug delivery challenges and novel therapeutic approaches for retinal diseases (ed. Cioffi CL), pp. 1–42. Berlin, Germany: Springer International Publishing. (10.1007/7355_2020_94) DOI

Ishikawa M, Sawada Y, Yoshitomi T. 2015. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells. Exp. Eye Res. 133 , 3–18. (10.1016/j.exer.2015.02.017) PubMed DOI

Liou GI, Bridges CDB, Fong SL, Alvarez RA, Gonzalez-Fernandez F. 1982. Vitamin a transport between retina and pigment epithelium—an interstitial protein carrying endogenous retinol (interstitial retinol-binding protein). Vis. Res. 22 , 1457–1467. (10.1016/0042-6989(82)90210-3) PubMed DOI

Fong SL, Liou GI, Landers RA, Alvarez RA, Bridges CD. 1984. Purification and characterization of a retinol-binding glycoprotein synthesized and secreted by bovine neural retina. J. Biol. Chem. 259 , 6534–6542. (10.1016/s0021-9258(20)82174-7) PubMed DOI

Zeng S, et al. . 2020. Interphotoreceptor retinoid-binding protein (IRBP) in retinal health and disease. Front. Cell. Neurosci. 14 , 577935. (10.3389/fncel.2020.577935) PubMed DOI PMC

Uehara F, Matthes MT, Yasumura D, LaVail MM. 1990. Light-evoked changes in the interphotoreceptor matrix. Science 248 , 1633–1636. (10.1126/science.2194288) PubMed DOI

Bunt-Milam AH, Saari JC. 1983. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J. Cell Biol. 97 , 703–712. (10.1083/jcb.97.3.703) PubMed DOI PMC

Hollyfield JG, Varner HH, Rayborn ME, Liou GI, Bridges CD. 1985. Endocytosis and degradation of interstitial retinol-binding protein: differential capabilities of cells that border the interphotoreceptor matrix. J. Cell Biol. 100 , 1676–1681. (10.1083/jcb.100.5.1676) PubMed DOI PMC

Lin ZS, Fong SL, Bridges CDB. 1989. Retinoids bound to interstitial retinol-binding protein during light and dark-adaptation. Vis. Res. 29 , 1699–1709. (10.1016/0042-6989(89)90152-1) PubMed DOI

Chen C, Adler L IV, Goletz P, Gonzalez-Fernandez F, Thompson DA, Koutalos Y. 2017. Interphotoreceptor retinoid–binding protein removes all-trans-retinol and retinal from rod outer segments, preventing lipofuscin precursor formation. J. Biol. Chem. 292 , 19356–19365. (10.1074/jbc.m117.795187) PubMed DOI PMC

Eisenfeld AJ, Bunt-Milam AH, Saari JC. 1985. Immunocytochemical localization of interphotoreceptor retinoid-binding protein in developing normal and RCS rat retinas. Investig. Ophthalmol. Vis. Sci. 26 , 775–778. PubMed

Gonzalez-Fernandez F, Healy JI. 1990. Early expression of the gene for interphotoreceptor retinol-binding protein during photoreceptor differentiation suggests a critical role for the interphotoreceptor matrix in retinal development. J. Cell Biol. 111 , 2775–2784. (10.1083/jcb.111.6.2775) PubMed DOI PMC

Liou GI, Wang M, Matragoon S. 1994. Timing of interphotoreceptor retinoid-binding protein (IRBP) gene expression and hypomethylation in developing mouse retina. Dev. Biol. 161 , 345–356. (10.1006/dbio.1994.1036) PubMed DOI

Gonzalez-Fernandez F, Sung D, Haswell KM, Tsin A, Ghosh D. 2014. Thiol-dependent antioxidant activity of interphotoreceptor retinoid-binding protein. Exp. Eye Res. 120 , 167–174. (10.1016/j.exer.2014.01.002) PubMed DOI PMC

Malechka VV, Moiseyev G, Takahashi Y, Shin Y, Ma J xing. 2017. Impaired rhodopsin generation in the rat model of diabetic retinopathy. Am. J. Pathol. 187 , 2222–2231. (10.1016/j.ajpath.2017.06.007) PubMed DOI PMC

Yokomizo H, et al. . 2019. Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy. Sci. Transl. Med. 11 , eaau6627. (10.1126/scitranslmed.aau6627) PubMed DOI PMC

Garcia-Ramírez M, et al. . 2009. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia 52 , 2633–2641. (10.1007/s00125-009-1548-8) PubMed DOI

Li S, Yang Z, Hu J, Gordon WC, Bazan NG, Haas AL, Bok D, Jin M. 2013. Secretory defect and cytotoxicity. J. Biol. Chem. 288 , 11395–11406. (10.1074/jbc.m112.418251) PubMed DOI PMC

den Hollander AI, McGee TL, Ziviello C, Banfi S, Dryja TP, Gonzalez-Fernandez F, Ghosh D, Berson EL. 2009. A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa. Investig. Opthalmology Vis. Sci. 50 , 1864. (10.1167/iovs.08-2497) PubMed DOI PMC

Narfström K, Nilsson SE, Wiggert B, Lee L, Chader GJ, van Veen T. 1989. Reduced level of interphotoreceptor retinoid-binding protein (IRBP), a possible cause for retinal degeneration in the Abyssinian cat. Cell Tissue Res. 257 , 631–639. (10.1007/bf00221474) PubMed DOI

Markand S, et al. . 2016. IRBP deficiency permits precocious ocular development and myopia. Mol. Vis. 22 , 1291–1308. PubMed PMC

Wisard J, et al. . 2011. Exaggerated eye growth in IRBP-deficient mice in early development. Investig. Opthalmology Vis. Sci. 52 , 5804. (10.1167/iovs.10-7129) PubMed DOI PMC

Georgiou M, et al. . 2024. RBP3-retinopathy—inherited high myopia and retinal dystrophy: genetic characterization, natural history, and deep phenotyping. Am. J. Ophthalmol. 258 , 2023. (10.1016/j.ajo.2023.09.025) PubMed DOI PMC

Arno G, Hull S, Robson AG, Holder GE, Cheetham ME, Webster AR, Plagnol V, Moore AT. 2015. Lack of interphotoreceptor retinoid binding protein caused by homozygous mutation of RBP3 is associated with high myopia and retinal dystrophy. Investig. Opthalmology Vis. Sci. 56 , 2358. (10.1167/iovs.15-16520) PubMed DOI

Ghosh D, Haswell KM, Sprada M, Gonzalez-Fernandez F. 2015. Structure of zebrafish IRBP reveals fatty acid binding. Exp. Eye Res. 140 , 149–158. (10.1016/j.exer.2015.08.026) PubMed DOI PMC

Gonzalez-Fernandez F, Baer CA, Ghosh D. 2007. Module structure of interphotoreceptor retinoid-binding protein (IRBP) may provide bases for its complex role in the visual cycle – structure/function study of Xenopus IRBP. BMC Biochem. 8 , 15. (10.1186/1471-2091-8-15) PubMed DOI PMC

Loew A, Gonzalez-Fernandez F. 2002. Crystal structure of the functional unit of interphotoreceptor retinoid binding protein. Structure 10 , 43–49. (10.1016/s0969-2126(01)00698-0) PubMed DOI

Gonzalez-Fernandez F, Bevilacqua T, Lee KI, Chandrashekar R, Hsu L, Garlipp MA, Griswold JB, Crouch RK, Ghosh D. 2009. Retinol-binding site in interphotoreceptor retinoid-binding protein (IRBP): a novel hydrophobic cavity. Investig. Opthalmology Vis. Sci. 50 , 5577. (10.1167/iovs.08-1857) PubMed DOI PMC

Sears AE, Albiez S, Gulati S, Wang B, Kiser P, Kovacik L, Engel A, Stahlberg H, Palczewski K. 2020. Single particle cryo‐EM of the complex between interphotoreceptor retinoid‐binding protein and a monoclonal antibody. FASEB J. 34 , 13918–13934. (10.1096/fj.202000796rr) PubMed DOI PMC

Mastronarde DN. 2005. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152 , 36–51. (10.1016/j.jsb.2005.07.007) PubMed DOI

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14 , 290–296. (10.1038/nmeth.4169) PubMed DOI

Rohou A, Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192 , 216–221. (10.1016/j.jsb.2015.08.008) PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66 , 486–501. (10.1107/s0907444910007493) PubMed DOI PMC

Liebschner D, et al. . 2019. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 75 , 861–877. (10.1107/s2059798319011471) PubMed DOI PMC

Williams CJ, et al. . 2018. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci. 27 , 293–315. (10.1002/pro.3330) PubMed DOI PMC

Liu Y, Yang X, Gan J, Chen S, Xiao ZX, Cao Y. 2022. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 50 , W159–W164. (10.1093/nar/gkac394) PubMed DOI PMC

Franke D, et al. . 2017. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 50 , 1212–1225. (10.1107/s1600576717007786) PubMed DOI PMC

Sievers F, et al. . 2011. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7 , 539. (10.1038/msb.2011.75) PubMed DOI PMC

Troshin PV, Procter JB, Barton GJ. 2011. Java bioinformatics analysis web services for multiple sequence alignment—JABAWS:MSA. Bioinformatics 27 , 2001–2002. (10.1093/bioinformatics/btr304) PubMed DOI PMC

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 , 1189–1191. (10.1093/bioinformatics/btp033) PubMed DOI PMC

Adler A, Evans C. 1983. Rapid isolation of bovine interphotoreceptor retinol-binding protein. Biochim. Et Biophys. Acta Gen. Subj. 761 , 217–222. (10.1016/0304-4165(83)90068-5) PubMed DOI

Holm L. 2020. DALI and the persistence of protein shape. Protein Sci. 29 , 128–140. (10.1002/pro.3749) PubMed DOI PMC

Adler AJ, Stafford WF 3rd, Slayter HS. 1987. Size and shape of bovine interphotoreceptor retinoid-binding protein by electron microscopy and hydrodynamic analysis. J. Biol. Chem. 262 , 13198–13203. (10.1016/s0021-9258(18)45187-3) PubMed DOI

Hauck SM, Schoeffmann S, Deeg CA, Gloeckner CJ, Swiatek-de Lange M, Ueffing M. 2005. Proteomic analysis of the porcine interphotoreceptor matrix. Proteomics 5 , 3623–3636. (10.1002/pmic.200401223) PubMed DOI

Adler AJ, Severin KM. 1981. Proteins of the bovine interphotoreceptor matrix: tissues of origin. Exp. Eye Res. 32 , 755–769. (10.1016/0014-4835(81)90025-7) PubMed DOI

Baer CA, Retief JD, Van Niel E, Braiman MS, Gonzalez-Fernandez F. 1998. Soluble expression in E. coli of a functional interphotoreceptor retinoid-binding protein module fused to thioredoxin: correlation of vitamin A binding regions with conserved domains of C-terminal processing proteases. Exp. Eye Res. 66 , 249–262. (10.1006/exer.1997.0418) PubMed DOI

Gross EA, Li GR, Lin ZY, Ruuska SE, Boatright JH, Mian IS, Nickerson JM. 2000. Prediction of structural and functional relationships of Repeat 1 of human interphotoreceptor retinoid-binding protein (IRBP) with other proteins. Mol. Vis. 6 , 30–39. PubMed

Ghosh D, Haswell KM, Sprada M, Gonzalez-Fernandez F. 2016. Fold conservation and proteolysis in zebrafish IRBP structure: clues to possible enzymatic function? Exp. Eye Res. 147 , 78–84. (10.1016/j.exer.2016.05.001) PubMed DOI PMC

Kalluraya CA, Weitzel AJ, Tsu BV, Daugherty MD. 2023. Bacterial origin of a key innovation in the evolution of the vertebrate eye. Proc. Natl. Acad. Sci. 120 , e2214815120. (10.1073/pnas.2214815120) PubMed DOI PMC

Kaushik V, Gessa L, Kumar N, Fernandes H. 2023. Towards a new biomarker for diabetic retinopathy: exploring RBP3 structure and retinoids binding for functional imaging of eyes in vivo. Int. J. Mol. Sci. 24 , 4408. (10.3390/ijms24054408) PubMed DOI PMC

Fickweiler W, Aiello LP, Sun JK, King GL. 2019. Retinol binding protein 3 as biomarker for diabetic retinopathy. Ann. Transl. Med. 7 , 706–706. (10.21037/atm.2019.10.95) PubMed DOI PMC

Kaushik V, Dąbrowski M, Gessa L, Kumar N, Fernandes H. 2023. Two-photon excitation fluorescence in ophthalmology: safety and improved imaging for functional diagnostics. Front. Med. 10 , 1293640. (10.3389/fmed.2023.1293640) PubMed DOI PMC

He X, Lobsiger J, Stocker A. 2009. Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. Proc. Natl. Acad. Sci. 106 , 18545–18550. (10.1073/pnas.0907454106) PubMed DOI PMC

Chen Y, Saari JC, Noy N. 1993. Interactions of all-trans-retinol and long-chain fatty acids with interphotoreceptor retinoid-binding protein. Biochemistry 32 , 11311–11318. (10.1021/bi00093a007) PubMed DOI

Chen Y, Houghton LA, Brenna JT, Noy N. 1996. Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. J. Biol. Chem. 271 , 20507–20515. (10.1074/jbc.271.34.20507) PubMed DOI

Adler AJ, Evans CD, Stafford WF 3rd. 1985. Molecular properties of bovine interphotoreceptor retinol-binding protein. J. Biol. Chem. 260 , 4850–4855. (10.1016/s0021-9258(18)89149-9) PubMed DOI

Okajima TIL, Pepperberg DR, Ripps H, Wiggert B, Chader GJ. 1989. Interphotoreceptor retinoid-binding protein: role in delivery of retinol to the pigment epithelium. Exp. Eye Res. 49 , 629–644. (10.1016/s0014-4835(89)80059-4) PubMed DOI

Saari JC, Teller DC, Crabb JW, Bredberg L. 1985. Properties of an interphotoreceptor retinoid-binding protein from bovine retina. J. Biol. Chem. 260 , 195–201. (10.1016/s0021-9258(18)89715-0) PubMed DOI

Tschanz CL, Noy N. 1997. Binding of retinol in both retinoid-binding sites of interphotoreceptor retinoid-binding protein (IRBP) is stabilized mainly by hydrophobic interactions. J. Biol. Chem. 272 , 30201–30207. (10.1074/jbc.272.48.30201) PubMed DOI

Shaw NS, Noy N. 2001. Interphotoreceptor retinoid-binding protein contains three retinoid binding sites. Exp. Eye Res. 72 , 183–190. (10.1006/exer.2000.0945) PubMed DOI

Baer CA, Kittredge KL, Klinger AL, Briercheck DM, Braiman MS, Gonzalez-Fernandez F. 1994. Expression and characterization of the fourth repeat of Xenopus interphotoreceptor retinoid-binding protein in E. coli. Curr. Eye Res. 13 , 391–400. (10.3109/02713689408999866) PubMed DOI

Lin ZY, Li GR, Takizawa N, Si JS, Gross EA, Richardson K, Nickerson JM. 1997. Structure-function relationships in interphotoreceptor retinoid-binding protein (IRBP). Mol. Vis. 3 , 17. PubMed

Nickerson JM, Li GR, Lin ZY, Takizawa N, Si JS, Gross EA. 1998. Structure-function relationships in the four repeats of human interphotoreceptor retinoid-binding protein (IRBP). Mol. Vis. 4 , 33. PubMed

Kaushik V, Gessa L, Kumar N, Pinkas M, Czarnocki-Cieciura M, Palczewski KPet al. . 2024. Supplementary material from: CryoEM structure and small-angle X-ray scattering analyses of porcine Retinol-Binding Protein 3 (RBP3). Figshare. (10.6084/m9.figshare.c.7599510) PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

CryoEM structure and small-angle X-ray scattering analyses of porcine retinol-binding protein 3

. 2025 Jan ; 15 (1) : 240180. [epub] 20250122

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...