MK-8776 and Olaparib Combination Acts Synergistically in Hepatocellular Carcinoma Cells, Demonstrating Lack of Adverse Effects on Liver Tissues in Ovarian Cancer PDX Model

. 2025 Jan 20 ; 26 (2) : . [epub] 20250120

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39859548

Grantová podpora
Sonata Bis 2019/34/E/NZ7/00056 National Science Centre, Poland

Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the HepG2 cells. This dual treatment significantly increased apoptosis markers, including γH2AX and caspase-3/7 activity. Both HCC cell lines exhibited heightened sensitivity to the combined treatment. The effect of drugs on the expression of proliferation markers in an olaparib-resistant patient-derived xenograft (PDX) model of ovarian cancer was also investigated. Ovarian tumors displayed reduced tissue growth, as reflected by a drop in proliferation marker Ki-67 levels in response to PARPi combined with CHK1i. No changes were observed in corresponding liver tissues using Ki-67 and pCHK staining, which indicates the absence of metastases and a hepatotoxic effect. Thus, our results indicate that the dual inhibition of PARP and CHK1 may prove to be a promising therapeutic approach in the treatment of primary HCC as well as OC tumors without the risk of liver metastases, especially in patients with olaparib-resistant tumor profiles.

Zobrazit více v PubMed

Biegala L., Gajek A., Marczak A., Rogalska A. Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival. Cells. 2023;12:1038. doi: 10.3390/cells12071038. PubMed DOI PMC

Gardner A.B., Charo L.M., Mann A.K., Kapp D.S., Eskander R.N., Chan J.K. Ovarian, uterine, and cervical cancer patients with distant metastases at diagnosis: Most common locations and outcomes. Clin. Exp. Metastasis. 2020;37:107–113. doi: 10.1007/s10585-019-10007-0. PubMed DOI

Deng K., Yang C., Tan Q., Song W., Lu M., Zhao W., Lou G., Li Z., Li K., Hou Y. Sites of distant metastases and overall survival in ovarian cancer: A study of 1481 patients. Gynecol. Oncol. 2018;150:460–465. doi: 10.1016/j.ygyno.2018.06.022. PubMed DOI

Donne R., Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 2023;77:1773–1796. doi: 10.1002/hep.32740. PubMed DOI PMC

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Chang Y., Jeong S.W., Young Jang J., Jae Kim Y. Recent Updates of Transarterial Chemoembolilzation in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020;21:8165. doi: 10.3390/ijms21218165. PubMed DOI PMC

Man S., Luo C., Yan M., Zhao G., Ma L., Gao W. Treatment for liver cancer: From sorafenib to natural products. Eur. J. Med. Chem. 2021;224:113690. PubMed

Zhao F., Zhou Y., Seesaha P.K., Zhang Y., Liu S., Gan X., Hu J., Gu Y., Chen X. Olaparib combined with immunotherapy for treating a patient with liver cancer carrying BRCA2 germline mutation: A case report. Medicine. 2020;99:e22312. doi: 10.1097/MD.0000000000022312. PubMed DOI PMC

Poveda A., Lheureux S., Colombo N., Cibula D., Lindemann K., Weberpals J., Bjurberg M., Oaknin A., Sikorska M., Gonzalez-Martin A., et al. Olaparib maintenance monotherapy in platinum-sensitive relapsed ovarian cancer patients without a germline BRCA1/BRCA2 mutation: OPINION primary analysis. Gynecol. Oncol. 2022;164:498–504. doi: 10.1016/j.ygyno.2021.12.025. PubMed DOI

Engelke C.G., Parsels L.A., Qian Y., Zhang Q., Karnak D., Robertson J.R., Tanska D.M., Wei D., Davis M.A., Parsels J.D., et al. Sensitization of Pancreatic Cancer to Chemoradiation by the Chk1 Inhibitor MK8776. Clin. Cancer Res. 2013;19:4412–4421. doi: 10.1158/1078-0432.CCR-12-3748. PubMed DOI PMC

Cassidy K.B., Bang S., Kurokawa M., Gerber S.A. Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J. 2020;287:1985–1999. doi: 10.1111/febs.15132. PubMed DOI PMC

Franza M., Albanesi J., Mancini B., Pennisi R., Leone S., Acconcia F., Bianchi F., di Masi A. The clinically relevant CHK1 inhibitor MK-8776 induces the degradation of the oncogenic protein PML-RARalpha and overcomes ATRA resistance in acute promyelocytic leukemia cells. Biochem. Pharmacol. 2023;214:115675. doi: 10.1016/j.bcp.2023.115675. PubMed DOI

Cui Q., Cai C.Y., Wang J.Q., Zhang S., Gupta P., Ji N., Yang Y., Dong X., Yang D.H., Chen Z.S. Chk1 Inhibitor MK-8776 Restores the Sensitivity of Chemotherapeutics in P-glycoprotein Overexpressing Cancer Cells. Int. J. Mol. Sci. 2019;20:4095. doi: 10.3390/ijms20174095. PubMed DOI PMC

Qiu Z., Oleinick N.L., Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol. 2018;126:450–464. doi: 10.1016/j.radonc.2017.09.043. PubMed DOI PMC

Guo Y., Wang J., Benedict B., Yang C., van Gemert F., Ma X., Gao D., Wang H., Zhang S., Lieftink C., et al. Targeting CDC7 potentiates ATR-CHK1 signaling inhibition through induction of DNA replication stress in liver cancer. Genome Med. 2021;13:166. doi: 10.1186/s13073-021-00981-0. PubMed DOI PMC

Biegala L., Statkiewicz M., Gajek A., Szymczak-Pajor I., Rusetska N., Sliwinska A., Marczak A., Mikula M., Rogalska A. Molecular mechanisms restoring olaparib efficacy through ATR/CHK1 pathway inhibition in olaparib-resistant BRCA1/2(MUT) ovarian cancer models. Biochim. Biophys. Acta Mol. Basis Dis. 2025;1871:167574. doi: 10.1016/j.bbadis.2024.167574. PubMed DOI

Qiu G.H., Xie X., Xu F., Shi X., Wang Y., Deng L. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology. 2015;67:1–12. doi: 10.1007/s10616-014-9761-9. PubMed DOI PMC

Liang Y., Yu L., Zhang D., Zhao X., Gao H., Slagle B.L., Goss J.A., Wang X., Li K., Lin S.Y. BRIT1 dysfunction confers synergistic inhibition of hepatocellular carcinoma by targeting poly (ADP-ribose) polymerases and PI3K. Am. J. Cancer Res. 2020;10:1900–1918. PubMed PMC

Zhang J.X., Li D.Q., He A.R., Motwani M., Vasiliou V., Eswaran J., Mishra L., Kumar R. Synergistic inhibition of hepatocellular carcinoma growth by cotargeting chromatin modifying enzymes and poly (ADP-ribose) polymerases. Hepatology. 2012;55:1840–1851. doi: 10.1002/hep.25566. PubMed DOI PMC

Jedrzejczyk M., Wisniewska K., Kania K.D., Marczak A., Szwed M. Transferrin-Bound Doxorubicin Enhances Apoptosis and DNA Damage through the Generation of Pro-Inflammatory Responses in Human Leukemia Cells. Int. J. Mol. Sci. 2020;21:9390. doi: 10.3390/ijms21249390. PubMed DOI PMC

Zhang J., Simpson C.M., Berner J., Chong H.B., Fang J., Ordulu Z., Weiss-Sadan T., Possemato A.P., Harry S., Takahashi M., et al. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway. Cell. 2023;186:2361–2379.e25. doi: 10.1016/j.cell.2023.04.026. PubMed DOI PMC

Campani C., Zucman-Rossi J., Nault J.C. Genetics of Hepatocellular Carcinoma: From Tumor to Circulating DNA. Cancers. 2023;15:817. doi: 10.3390/cancers15030817. PubMed DOI PMC

Lampiasi N., Umezawa K., Montalto G., Cervello M. Poly (ADP-ribose) polymerase inhibition synergizes with the NF-kappaB inhibitor DHMEQ to kill hepatocellular carcinoma cells. Biochim. Biophys. Acta. 2014;1843:2662–2673. doi: 10.1016/j.bbamcr.2014.07.010. PubMed DOI

Brill E., Yokoyama T., Nair J., Yu M., Ahn Y.R., Lee J.M. Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget. 2017;8:111026–111040. doi: 10.18632/oncotarget.22195. PubMed DOI PMC

Myers K., Gagou M.E., Zuazua-Villar P., Rodriguez R., Meuth M. ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet. 2009;5:e1000324. doi: 10.1371/journal.pgen.1000324. PubMed DOI PMC

Wang C., Tang H., Geng A., Dai B., Zhang H., Sun X., Chen Y., Qiao Z., Zhu H., Yang J., et al. Rational combination therapy for hepatocellular carcinoma with PARP1 and DNA-PK inhibitors. Proc. Natl. Acad. Sci. USA. 2020;117:26356–26365. doi: 10.1073/pnas.2002917117. PubMed DOI PMC

Mao X., Du S., Yang Z., Zhang L., Peng X., Jiang N., Zhou H. Inhibitors of PARP-1 exert inhibitory effects on the biological characteristics of hepatocellular carcinoma cells in vitro. Mol. Med. Rep. 2017;16:208–214. doi: 10.3892/mmr.2017.6568. PubMed DOI PMC

Fang Y., Gong Z., You M., Peng K. Identification of a novel caspase cleavage motif AEAD. Virol. Sin. 2024;39:755–766. doi: 10.1016/j.virs.2024.08.001. PubMed DOI PMC

van der Noll R., Jager A., Ang J.E., Marchetti S., Mergui-Roelvink M.W.J., de Bono J.S., Lolkema M.P., de Jonge M.J.A., van der Biessen D.A., Brunetto A.T., et al. Phase I study of intermittent olaparib capsule or tablet dosing in combination with carboplatin and paclitaxel (part 2) Investig. New Drugs. 2020;38:1096–1107. doi: 10.1007/s10637-019-00857-6. PubMed DOI

Coleman R.L., Oza A.M., Lorusso D., Aghajanian C., Oaknin A., Dean A., Colombo N., Weberpals J.I., Clamp A., Scambia G., et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:1949–1961. doi: 10.1016/S0140-6736(17)32440-6. PubMed DOI PMC

Wang F., Gao S., Wu M., Zhao D., Sun H., Yav S., Chen Y., Zhang Z., Yang M., Dong Y., et al. The prognostic role of the AST/ALT ratio in hepatocellular carcinoma patients receiving thermal ablation combined with simultaneous TACE. BMC Gastroenterol. 2023;23:80. doi: 10.1186/s12876-023-02719-1. PubMed DOI PMC

Liu J.F., Xiong N., Campos S.M., Wright A.A., Krasner C., Schumer S., Horowitz N., Veneris J., Tayob N., Morrissey S., et al. Phase II Study of the WEE1 Inhibitor Adavosertib in Recurrent Uterine Serous Carcinoma. J. Clin. Oncol. 2021;39:1531–1539. doi: 10.1200/JCO.20.03167. PubMed DOI

Seligmann J.F., Fisher D.J., Brown L.C., Adams R.A., Graham J., Quirke P., Richman S.D., Butler R., Domingo E., Blake A., et al. Inhibition of WEE1 Is Effective in TP53- and RAS-Mutant Metastatic Colorectal Cancer: A Randomized Trial (FOCUS4-C) Comparing Adavosertib (AZD1775) With Active Monitoring. J. Clin. Oncol. 2021;39:3705–3715. doi: 10.1200/JCO.21.01435. PubMed DOI PMC

Daukantiene L., Kazbariene B., Valuckas K.P., Didziapetriene J., Krikstaponiene A., Aleknavicius E. The significance of reduced glutathione and glutathione S-transferase during chemoradiotherapy of locally advanced cervical cancer. Medicina. 2014;50:222–229. doi: 10.1016/j.medici.2014.09.005. PubMed DOI

Su F., Hu X., Jia W., Gong C., Song E., Hamar P. Glutathion S transferase pi indicates chemotherapy resistance in breast cancer. J. Surg. Res. 2003;113:102–108. doi: 10.1016/S0022-4804(03)00200-2. PubMed DOI

Baltruskeviciene E., Kazbariene B., Aleknavicius E., Krikstaponiene A., Venceviciene L., Suziedelis K., Stratilatovas E., Didziapetriene J. Changes of reduced glutathione and glutathione S-transferase levels in colorectal cancer patients undergoing treatment. Tumori. 2018;104:375–380. doi: 10.5301/tj.5000674. PubMed DOI

Lopez-Acevedo M., Grace L., Teoh D., Whitaker R., Adams D.J., Jia J., Nixon A.B., Secord A.A. Dasatinib (BMS-35482) potentiates the activity of gemcitabine and docetaxel in uterine leiomyosarcoma cell lines. Gynecol. Oncol. Res. Pract. 2014;1:2. doi: 10.1186/2053-6844-1-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...