• This record comes from PubMed

Red Deer Resequencing Reveals the Importance of Sex Chromosomes for Reconstructing Late Quaternary Events

. 2025 Feb 03 ; 42 (2) : .

Language English Country United States Media print

Document type Journal Article

Grant support
Hesse's funding program LOEWE
PRG1209 Leibniz Association
Estonian Ministry of Education and Research
2016/23/N/NZ8/03995 Polish National Science Centre
DNRF173 Danish National Research Foundation

Sex chromosomes differ in their inheritance properties from autosomes and hence may encode complementary information about past demographic events. We compiled and analyzed a range-wide resequencing data set of the red deer (Cervus elaphus), one of the few Eurasian herbivores of the Late Pleistocene megafauna still found throughout much of its historic range. Our analyses of 144 whole genomes reveal striking discrepancies between the population clusters suggested by autosomal and X-chromosomal data. We postulate that the genetic legacy of Late Glacial population structure is better captured and preserved by the X chromosome than by autosomes, for two reasons. First, X chromosomes have a lower Ne and hence lose genetic variation faster during isolation in glacial refugia, causing increased population differentiation. Second, following postglacial recolonization and secondary contact, immigrant males pass on their X chromosomes to female offspring only, which effectively halves the migration rate when gene flow is male mediated. Our study illustrates how a comparison between autosomal and sex chromosomal phylogeographic signals unravels past demographic processes that otherwise would remain hidden.

Biodiversity and Climate Research Center Senckenberg Institute Frankfurt am Main 60325 Germany

Biology and Ethology Unit Faculty of Veterinary University of Extremadura Caceres Spain

Center for Ecological Dynamics in a Novel Biosphere Department of Biology Aarhus University Aarhus C 8000 Denmark

Department of Animal and Food Science Universitat Autònoma de Barcelona Barcelona 08193 Spain

Department of Archaeology and Heritage Studies Aarhus University Højbjerg DK 8270 Denmark

Department of Biodiversity Faculty of Mathematics Natural Sciences and Information Technologies University of Primorska Koper 6000 Slovenia

Department of Chemistry and Bioscience Aalborg University Aalborg 9220 Denmark

Department of Ethology Institute of Animal Science Czech University of Life Sciences 10400 Prague 10 Uhrineves Czechia

Department of Evolutionary Biology University of Vienna Vienna Austria

Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences University of Life Sciences 16500 Prague 6 Suchdol Czechia

Department of Genetics Developmental and Molecular Biology School of Biology Aristotle University of Thessaloniki Thessaloniki 54124 Greece

Department of Genetics University of the Free State Bloemfontein South Africa

Department of Mammal Collection Natural History Museum Vienna Vienna Austria

Department of Natural Resources Isfahan University of Technology Isfahan Iran

Department of Preclinical Sciences and Pathology Norwegian University of Life Sciences P O Box 5003 Ås 1432 Norway

Department of Veterinary Medicine University of Sassari Sassari 07100 Italy

Department of Zoology Fisheries Hydrobiology and Apiculture Faculty of AgriSciences Mendel University in Brno Brno 613 00 Czech Republic

Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu 50409 Estonia

Department of Zoology State Museum of Natural History Stuttgart Stuttgart 70191 Germany

Dept of Ecology and Genetics Uppsala University Uppsala SE 75236 Sweden

Domaine National de Chambord Chambord France

Faculty of Environmental Protection Velenje 3320 Slovenia

Faculty of Forestry University of Belgrade Belgrade 11000 Serbia

Institute for Ecology Evolution and Diversity Goethe University Frankfurt am Main Germany

Institute of Ecology and Evolution School of Biological Sciences University of Edinburgh Edinburgh EH93FL UK

Institute of Ecology Ilia State University Tbilisi 0162 Georgia

Institute of Vertebrate Biology Czech Academy of Sciences Brno 603 00 Czech Republic

Instituto de Investigación en Recursos Cinegéticos IREC Ciudad Real Spain

LOEWE Centre for Translational Biodiversity Genomics Senckenberg Nature Research Society Frankfurt am Main Germany

Mammal Research Institute Polish Academy of Sciences Białowieża 17 230 Poland

Marine and Freshwater Research Centre Department of Natural Resources and the Environment Atlantic Technological University Galway Ireland

Max Perutz Labs Vienna BioCentre Vienna 1030 Austria

Office Français de la Biodiversité Direction de la Recherche et de l'Appui Scientifique Service Anthropisation et fonctionnement des écosystèmes terrestres France

Office Français de la Biodiversité Direction de la Recherche et de l'Appui Scientifique Service Conservation et Gestion Durable des Espèces Exploités France

Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina NT Australia

School of Archaeology University College Dublin Dublin 4 Ireland

Scientific Research Center Musee National d'Histoire Naturelle Luxembourg L 2160 Luxembourg

Tbilisi Zoo Tbilisi 0171 Georgia

The Faculty of Veterinary Medicine University of Zagreb Zagreb Croatia

Tierpark Berlin Friedrichsfelde GmbH Berlin 10319 Germany

Wildlife Ecology and Conservation Group Wageningen University Wageningen PB 6708 The Netherlands

Wildlife Research Unit University of Cordoba Cordoba Spain

Erratum In

PubMed

See more in PubMed

Arntzen  JW, de Vries  W, Canestrelli  D, Martínez-Solano  I. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Mol Ecol.  2017:26(20):5663–5675. 10.1111/mec.14273. PubMed DOI

Bailey  G, Andersen  SH, Maarleveld  TJ. Denmark: mesolithic coastal landscapes submerged. In: Bailey  G, Galanidou  N, Peeters  H, Jöns  H, Mennenga  M, editors. The archaeology of Europe’s drowned landscapes. Cham: Springer International Publishing; 2020. p. 39–76.

Barton  NH. The dynamics of hybrid zones. Heredity (Edinb).  1979:43(3):341–359. 10.1038/hdy.1979.87. DOI

Barton  NH, Hewitt  GM. Analysis of hybrid zones. Annu Rev Ecol Syst.  1985:16(1):113–148. 10.1146/annurev.es.16.110185.000553. DOI

Bertl  J, Ringbauer  H, Blum  MGB. Can secondary contact following range expansion be distinguished from barriers to gene flow?  PeerJ. 2018:6:e5325. 10.7717/peerj.5325. PubMed DOI PMC

Bhagwat  SA, Willis  KJ. Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits?  J Biogeogr.  2008:35(3):464–482. 10.1111/j.1365-2699.2007.01861.x. DOI

Bivand  R, Keitt  T, Rowlingson  B, Pebesma  E, Sumner  M, Hijmans  R, Baston  D, Rouault  E, Warmerdam  F, Ooms  J, et al.  2021. rgdal: Bindings for the “Geospatial” Data Abstraction Library. [accessed 2024 April]. https://CRAN.R-project.org/package=rgd.

Björck  S. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int.  1995:27:19–40. 10.1016/1040-6182(94)00057-C. DOI

Borowik  T, Wawrzyniak  P, Jędrzejewska  B. Red deer (Cervus elaphus) fertility and survival of young in a low-density population subject to predation and hunting. J Mammal.  2016:97(6):1671–1681. 10.1093/jmammal/gyw133. DOI

Borowski  Z, Świsłocka  M, Matosiuk  M, Mirski  P, Krysiuk  K, Czajkowska  M, Borkowska  A, Ratkiewicz  M. Purifying selection, density blocking and unnoticed mitochondrial DNA diversity in the red deer, Cervus elaphus. PLoS One. 2016:11(9):e0163191. 10.1371/journal.pone.0163191. PubMed DOI PMC

Britton  T, Oxelman  B, Vinnersten  A, Bremer  K. Phylogenetic dating with confidence intervals using mean path lengths. Mol Phylogenet Evol. 2002:24(1):58–65. 10.1016/S1055-7903(02)00268-3. PubMed DOI

Carden  RF, McDevitt  AD, Zachos  FE, Woodman  PC, O’Toole  P, Rose  H, Monaghan  NT, Campana  MG, Bradley  DG, Edwards  CJ. Phylogeographic, ancient DNA, fossil and morphometric analyses reveal ancient and modern introductions of a large mammal: the complex case of red deer (Cervus elaphus) in Ireland. Quat Sci Rev.  2012:42:74–84. 10.1016/j.quascirev.2012.02.012. DOI

Carranza  J, Pérez-González  J, Anaya  G, de Jong  M, Broggini  C, Zachos  FE, McDevitt  AD, Niedziałkowska  M, Sykut  M, Csányi  S, et al.  Genome-wide SNP assessment of contemporary European red deer genetic structure highlights the distinction of peripheral populations and the main admixture zones in Europe. Mol Ecol. 2024:33(18):e17508. 10.1111/mec.17508. PubMed DOI

Carranza  J, Salinas  M, de Andrés  D, Pérez-González  J. Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol Evol. 2016:6(4):905–922. 10.1002/ece3.1836. PubMed DOI PMC

Çoraman  E, Dietz  C, Hempel  E, Ghazaryan  A, Levin  E, Presetnik  P, Zagmajster  M, Mayer  F. Reticulate evolutionary history of a Western Palaearctic Bat Complex explained by multiple mtDNA introgressions in secondary contacts. J Biogeogr.  2019:46(2):343–354. 10.1111/jbi.13509. DOI

Danecek  P, Auton  A, Abecasis  G, Albers  CA, Banks  E, DePristo  MA, Handsaker  RE, Lunter  G, Marth  GT, Sherry  ST, et al.  The variant call format and VCFtools. Bioinformatics. 2011:27(15):2156–2158. 10.1093/bioinformatics/btr330. PubMed DOI PMC

de Jong  JF, van Hooft  P, Megens  H-J, Crooijmans  RPMA, de Groot  GA, Pemberton  JM, Huisman  J, Bartoš  L, Iacolina  L, van Wieren  SE, et al.  Fragmentation and translocation distort the genetic landscape of ungulates: red deer in the Netherlands. Front Ecol Evol.  2020:8:535715. 10.3389/fevo.2020.535715. DOI

de Jong  MJ, de Jong  JF, Hoelzel  AR, Janke  A. Sambar: an R package for fast, easy and reproducible population-genetic analyses of biallelic SNP data sets. Mol Ecol Resour. 2021:21(4):1369–1379. 10.1111/1755-0998.13339. PubMed DOI

de Jong  MJ, Niamir  A, Wolf  M, Kitchener  AC, Lecomte  N, Seryodkin  IV, Fain  SR, Hagen  SB, Saarma  U, Janke  A. Range-wide whole-genome resequencing of the brown bear reveals drivers of intraspecies divergence. Commun Biol. 2023:6(1):153. 10.1038/s42003-023-04514-w. PubMed DOI PMC

de Jong  MJ, van Oosterhout  C, Hoelzel  R, Janke  A. Calculating and interpreting FST in the genomics era. bioRxiv 614506. 10.1101/2024.09.24.614506, 24 September 2024, preprint: not peer reviewed. DOI

Della Libera  M, Passilongo  D, Reby  D. Acoustics of male rutting roars in the endangered population of Mesola red deer Cervus elaphus italicus. Mamm Biol.  2015:80(5):395–400. 10.1016/j.mambio.2015.05.001. DOI

DePristo  MA, Banks  E, Poplin  R, Garimella  KV, Maguire  JR, Hartl  C, Philippakis  AA, del Angel  G, Rivas  MA, Hanna  M, et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011:43(5):491–498. 10.1038/ng.806. PubMed DOI PMC

Doan  K, Niedziałkowska  M, Stefaniak  K, Sykut  M, Jędrzejewska  B, Ratajczak-Skrzatek  U, Piotrowska  N, Ridush  B, Zachos  FE, Popović  D, et al.  Phylogenetics and phylogeography of red deer mtDNA lineages during the last 50 000 years in Eurasia. Zool J Linn Soc.  2022:194(2):431–456. 10.1093/zoolinnean/zlab025. DOI

Doan  K, Zachos  FE, Wilkens  B, Vigne  J-D, Piotrowska  N, Stanković  A, Jędrzejewska  B, Stefaniak  K, Niedziałkowska  M. Phylogeography of the Tyrrhenian red deer (Cervus elaphus corsicanus) resolved using ancient DNA of radiocarbon-dated subfossils. Sci Rep. 2017:7(1):2331. 10.1038/s41598-017-02359-y. PubMed DOI PMC

Eckert  AJ, Carstens  BC. Does gene flow destroy phylogenetic signal? The performance of three methods for estimating species phylogenies in the presence of gene flow. Mol Phylogenet Evol. 2008:49(3):832–842. 10.1016/j.ympev.2008.09.008. PubMed DOI

Ewels  P, Magnusson  M, Lundin  S, Käller  M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016:32(19):3047–3048. 10.1093/bioinformatics/btw354. PubMed DOI PMC

Fernández-Garcia  M, Pederzani  S, Britton  K, Agudo-Perez  L, Cicero  A, Geiling  J, Daura  J, Sanz-Borras  M, Marin-Arroyo  AB. Palaeoecology of ungulates in northern Iberia during the Late Pleistocene through isotopic analysis of teeth. Biogeosci Discuss. 2024;21(19):4413–4437. 10.5194/bg-21-4413-2024. DOI

Fickel  J, Bubliy  OA, Stache  A, Noventa  T, Jirsa  A, Heurich  M. Crossing the border? Structure of the red deer (Cervus elaphus) population from the Bavarian–Bohemian forest ecosystem. Mamm Biol.  2012:77(3):211–220. 10.1016/j.mambio.2011.11.005. DOI

Fordham  DA, Saltré  F, Haythorne  S, Wigley  TML, Otto-Bliesner  BL, Chan  KC, Brook  BW. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography. 2017:40(11):1348–1358. 10.1111/ecog.03031. DOI

Frantz  AC, Hamann  J-L, Klein  F. Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. Eur J Wildl Res. 2008:54(1):44–52. 10.1007/s10344-007-0107-1. DOI

Frey  R, Volodin  I, Volodina  E, Carranza  J, Torres-Porras  J. Vocal anatomy, tongue protrusion behaviour and the acoustics of rutting roars in free-ranging Iberian red deer stags (Cervus elaphus hispanicus). J Anat. 2012:220(3):271–292. 10.1111/j.1469-7580.2011.01467.x. PubMed DOI PMC

Frichot  E, François  O. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol.  2015:6(8):925–929. 10.1111/2041-210X.12382. DOI

Geist  V. Deer of the world: their evolution, behaviour and ecology. 1st ed. Shrewsbury: Swan Hill Press; 1999.

Geptner  VG; Nasimovich . 1988. Mammals of the Soviet Union v. 2, pt. 1a (1998). [accessed 2024 April]. https://library.si.edu/digital-library/book/mammalsofsov211998gept.

Haanes  H, Røed  KH, Perez-Espona  S, Rosef  O. Low genetic variation support bottlenecks in Scandinavian red deer. Eur J Wildl Res. 2011:57(6):1137–1150. 10.1007/s10344-011-0527-9. DOI

Hajji  GM, Zachos  FE, Charfi-Cheikrouha  F, Hartl  GB. Conservation genetics of the imperilled Barbary red deer in Tunisia. Anim Conserv.  2007:10(2):229–235. 10.1111/j.1469-1795.2007.00098.x. DOI

Hewitt  GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc Lond.  1996:58(3):247–276. 10.1006/bijl.1996.0035. DOI

Hewitt  GM. Post-glacial re-colonization of European biota. Biol J Linn Soc Lond.  1999:68(1-2):87–112. 10.1111/j.1095-8312.1999.tb01160.x. DOI

Hijmans  RJ. 2019. raster: Geographic Data Analysis and Modeling. [accessed 2024 April]. https://CRAN.R-project.org/package=raster.

Hijmans  RJ, Phillips  S, Leathwick  J, Elith  J. 2020. dismo: Species Distribution Modeling. [accessed 2024 April]. https://CRAN.R-project.org/package=dismo.

Höglund  J, Cortazar-Chinarro  M, Jarnemo  A, Thulin  C-G. Genetic variation and structure in Scandinavian red deer (Cervus elaphus): influence of ancestry, past hunting, and restoration management. Biol J Linn Soc Lond.  2013:109(1):43–53. 10.1111/bij.12049. DOI

Holsinger  KE, Weir  BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet. 2009:10(9):639–650. 10.1038/nrg2611. PubMed DOI PMC

Hudson  RR, Slatkin  M, Maddison  WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992:132(2):583–589. 10.1093/genetics/132.2.583. PubMed DOI PMC

Jarnemo  A. Seasonal migration of male red deer (Cervus elaphus) in southern Sweden and consequences for management. Eur J Wildl Res. 2008:54(2):327–333. 10.1007/s10344-007-0154-7. DOI

Jarnemo  A. Male red deer (Cervus elaphus) dispersal during the breeding season. J Ethol. 2011:29(2):329–336. 10.1007/s10164-010-0262-9. DOI

Jombart  T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008:24(11):1403–1405. 10.1093/bioinformatics/btn129. PubMed DOI

Kamler  JF, Jędrzejewska  B, JĘdrzejewski  W. Factors affecting daily ranges of red deer Cervus elaphus in Białowieża Primeval Forest, Poland. Acta Theriol. 2007:52(2):113–118. 10.1007/BF03194206. DOI

Karaiskou  N, Tsakogiannis  A, Gkagkavouzis  K, Operator of Parnitha National Park; Papika  S, Latsoudis  P, Kavakiotis  I, Pantis  J, Abatzopoulos  TJ, Triantaphyllidis  C, et al.  Greece: a Balkan subrefuge for a remnant red deer (Cervus elaphus) population. J Hered. 2014:105(3):334–344. 10.1093/jhered/esu007. PubMed DOI

Karger  DN, Conrad  O, Böhner  J, Kawohl  T, Kreft  H, Soria-Auza  RW, Zimmermann  NE, Linder  HP, Kessler  M. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017:4(1):170122. 10.1038/sdata.2017.122. PubMed DOI PMC

Kierepka  EM, Preckler-Quisquater  S, Reding  DM, Piaggio  AJ, Riley  SPD, Sacks  BN. Genomic analyses of gray fox lineages suggest ancient divergence and secondary contact in the southern Great Plains. J Hered.  2023:114(2):110–119. 10.1093/jhered/esac060. PubMed DOI

Krojerová-Prokešová  J, Barančeková  M, Koubek  P. Admixture of Eastern and Western European red deer lineages as a result of postglacial recolonization of the Czech Republic (central Europe). J Hered. 2015:106(4):375–385. 10.1093/jhered/esv018. PubMed DOI

Kropil  R, Smolko  P, Garaj  P. Home range and migration patterns of male red deer Cervus elaphus in Western Carpathians. Eur J Wildl Res. 2015:61(1):63–72. 10.1007/s10344-014-0874-4. DOI

Laan  M, Wiebe  V, Khusnutdinova  E, Remm  M, Pääbo  S. X-chromosome as a marker for population history: linkage disequilibrium and haplotype study in Eurasian populations. Eur J Hum Genet. 2005:13(4):452–462. 10.1038/sj.ejhg.5201340. PubMed DOI PMC

Li  H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011a:27(21):2987–2993. 10.1093/bioinformatics/btr509. PubMed DOI PMC

Li  H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 2011b:27(5):718–719. 10.1093/bioinformatics/btq671. PubMed DOI PMC

Li  H, Durbin  R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009:25(14):1754–1760. 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li  H, Handsaker  B, Wysoker  A, Fennell  T, Ruan  J, Homer  N, Marth  G, Abecasis  G, Durbin  R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009:25(16):2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC

Liu  J, Shen  Q, Bao  H. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens. PLoS One. 2022:17(1):e0262574. 10.1371/journal.pone.0262574. PubMed DOI PMC

Loe  LE, Mysterud  A, Veiberg  V, Langvatn  R. Negative density-dependent emigration of males in an increasing red deer population. Proc R Soc Lond B Biol Sci.  2009:276(1667):2581–2587. 10.1098/rspb.2009.0224. PubMed DOI PMC

Ludt  CJ, Schroeder  W, Rottmann  O, Kuehn  R. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol. 2004:31(3):1064–1083. 10.1016/j.ympev.2003.10.003. PubMed DOI

Mackiewicz  P, Matosiuk  M, Świsłocka  M, Zachos  FE, Hajji  GM, Saveljev  AP, Seryodkin  IV, Farahvash  T, Rezaei  HR, Torshizi  RV, et al.  Phylogeny and evolution of the genus Cervus (Cervidae, Mammalia) as revealed by complete mitochondrial genomes. Sci Rep. 2022:12(1):16381. 10.1038/s41598-022-20763-x. PubMed DOI PMC

Masonbrink  RE, Alt  D, Bayles  DO, Boggiatto  P, Edwards  W, Tatum  F, Williams  J, Wilson-Welder  J, Zimin  A, Severin  A, et al.  A pseudomolecule assembly of the Rocky Mountain elk genome. PLoS One. 2021:16(4):e0249899. 10.1371/journal.pone.0249899. PubMed DOI PMC

McDevitt  AD, Coscia  I, Browett  SS, Ruiz-González  A, Statham  MJ, Ruczyńska  I, Roberts  L, Stojak  J, Frantz  AC, Norén  K, et al.  Next-generation phylogeography resolves post-glacial colonization patterns in a widespread carnivore, the red fox (Vulpes vulpes), in Europe. Mol Ecol.  2022:31(3):993–1006. 10.1111/mec.16276. PubMed DOI

McFarlane  SE, Hunter  DC, Senn  HV, Smith  SL, Holland  R, Huisman  J, Pemberton  JM. Increased genetic marker density reveals high levels of admixture between red deer and introduced Japanese sika in Kintyre, Scotland. Evol Appl.  2020:13(2):432–441. 10.1111/eva.12880. PubMed DOI PMC

Meiri M, Kosintsev P, Conroy K, Meiri S, Barnes I, Lister A. Subspecies dynamics in space and time: a study of the red deer complex using ancient and modern DNA and morphology. J Biogeogr. 2017:1–14. 10.1111/jbi.13124. DOI

Minh  BQ, Schmidt  HA, Chernomor  O, Schrempf  D, Woodhams  MD, von Haeseler  A, Lanfear  R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol.  2020:37(5):1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC

Nabholz  B, Glémin  S, Galtier  N. Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol.  2008:25(1):120–130. 10.1093/molbev/msm248. PubMed DOI

Niedziałkowska  M, Doan  K, Górny  M, Sykut  M, Stefaniak  K, Piotrowska  N, Jędrzejewska  B, Ridush  B, Pawełczyk  S, Mackiewicz  P, et al.  Winter temperature and forest cover have shaped red deer distribution in Europe and the Ural Mountains since the Late Pleistocene. J Biogeogr.  2021:48(1):147–159. 10.1111/jbi.13989. DOI

Niedziałkowska  M, Fontaine  MC, Jędrzejewska  B. Factors shaping gene flow in red deer (Cervus elaphus) in seminatural landscapes of central Europe. Can J Zool.  2012:90(2):150–162. 10.1139/z11-122. DOI

Niedziałkowska  M, Jędrzejewska  B, Honnen  A-C, Otto  T, Sidorovich  VE, Perzanowski  K, Skog  A, Hartl  GB, Borowik  T, Bunevich  AN, et al. . Molecular biogeography of red deer Cervus elaphus from eastern Europe: insights from mitochondrial DNA sequences. Acta Theriol (Warsz). 2011:56(1):1–12. 10.1007/s13364-010-0002-0. PubMed DOI PMC

Nieto Feliner  G. Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspect Plant Ecol Evol Syst.  2014:16(5):265–278. 10.1016/j.ppees.2014.07.002. DOI

Nilsson  B, Hansson  A, Sjöström  A. Sweden: submerged landscapes of the early mesolithic. In: Bailey  G, Galanidou  N, Peeters  H, Jöns  H, Mennenga  M, editors. The archaeology of Europe’s drowned landscapes. Cham: Springer International Publishing; 2020. p. 77–93.

Nussey  DH, Coltman  DW, Coulson  T, Kruuk  LEB, Donald  A, Morris  SJ, Clutton-Brock  TH, Pemberton  J. Rapidly declining fine-scale spatial genetic structure in female red deer. Mol Ecol.  2005:14(11):3395–3405. 10.1111/j.1365-294X.2005.02692.x. PubMed DOI

Nussey  DH, Pemberton  J, Donald  A, Kruuk  LEB. Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity (Edinb). 2006:97(1):56–65. 10.1038/sj.hdy.6800838. PubMed DOI

Ortiz  EM. 2019. vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. [accessed 2024 April]. https://zenodo.org/records/2540861.

Paradis  E, Schliep  K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018:35(3):526–528. 10.1093/bioinformatics/bty633. PubMed DOI

Passilongo  D, Reby  D, Carranza  J, Apollonio  M. Roaring high and low: composition and possible functions of the Iberian stag’s vocal repertoire. PLoS One. 2013:8(5):e63841. 10.1371/journal.pone.0063841. PubMed DOI PMC

Patterson  N, Moorjani  P, Luo  Y, Mallick  S, Rohland  N, Zhan  Y, Genschoreck  T, Webster  T, Reich  D. Ancient admixture in human history. Genetics. 2012:192(3):1065–1093. 10.1534/genetics.112.145037. PubMed DOI PMC

Pérez-Espona  S, Pérez-Barbería  FJ, Goodall-Copestake  WP, Jiggins  CD, Gordon  IJ, Pemberton  JM. Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey. Heredity (Edinb).  2009:102(2):199–210. 10.1038/hdy.2008.111. PubMed DOI

Pérez-Espona  S, Pérez-Barbería  FJ, Mcleod  JE, Jiggins  CD, Gordon  IJ, Pemberton  JM. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol.  2008:17(4):981–996. 10.1111/j.1365-294X.2007.03629.x. PubMed DOI

Phillips  SJ, Anderson  RP, Schapire  RE. Maximum entropy modeling of species geographic distributions. Ecol Modell.  2006:190(3-4):231–259. 10.1016/j.ecolmodel.2005.03.026. DOI

Preckler-Quisquater  S, Kierepka  EM, Reding  DM, Piaggio  AJ, Sacks  BN. Can demographic histories explain long-term isolation and recent pulses of asymmetric gene flow between highly divergent grey fox lineages?  Mol Ecol. 2023:32(19):5323–5337. 10.1111/mec.17105. PubMed DOI

Purcell  S, Neale  B, Todd-Brown  K, Thomas  L, Ferreira  MAR, Bender  D, Maller  J, Sklar  P, de Bakker  PIW, Daly  MJ, et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet.  2007:81(3):559–575. 10.1086/519795. PubMed DOI PMC

Queirós  J, Acevedo  P, Santos  JPV, Barasona  J, Beltran-Beck  B, González-Barrio  D, Armenteros  JA, Diez-Delgado  I, Boadella  M, de Mera  IF, et al.  Red deer in Iberia: molecular ecological studies in a southern refugium and inferences on European postglacial colonization history. PLoS One. 2019:14(1):e0210282. 10.1371/journal.pone.0210282. PubMed DOI PMC

Ramos  MA, Lobo  JM, Esteban  M. Ten years inventorying the Iberian fauna: results and perspectives. Biodivers Conserv.  2001:10(1):19–28. 10.1023/A:1016658804566. DOI

R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

Reich  D, Thangaraj  K, Patterson  N, Price  AL, Singh  L. Reconstructing Indian population history. Nature. 2009:461(7263):489–494. 10.1038/nature08365. PubMed DOI PMC

Schubert  M, Lindgreen  S, Orlando  L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016:9(1):88. 10.1186/s13104-016-1900-2. PubMed DOI PMC

Shi  M-M, Chen  X-Y. Leading-edge populations do not show low genetic diversity or high differentiation in a wind-pollinated tree. Popul Ecol.  2012:54(4):591–600. 10.1007/s10144-012-0332-7. DOI

Skog  A, Zachos  FE, Rueness  EK, Feulner  PGD, Mysterud  A, Langvatn  R, Lorenzini  R, Hmwe  SS, Lehoczky  I, Hartl  GB, et al.  Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr.  2009:36(1):66–77. 10.1111/j.1365-2699.2008.01986.x. DOI

Sommer  RS, Nadachowski  A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev.  2006:36(4):251–265. 10.1111/j.1365-2907.2006.00093.x. DOI

Sommer  RS, Zachos  FE. Fossil evidence and phylogeography of temperate species: ‘glacial refugia’ and post-glacial recolonization. J Biogeogr.  2009:36(11):2013–2020. 10.1111/j.1365-2699.2009.02187.x. DOI

Sommer  RS, Zachos  FE, Street  M, Jöris  O, Skog  A, Benecke  N. Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev.  2008:27(7-8):714–733. 10.1016/j.quascirev.2007.11.016. DOI

Stankowski  S, Chase  MA, McIntosh  H, Streisfeld  MA. Integrating top-down and bottom-up approaches to understand the genetic architecture of speciation across a monkeyflower hybrid zone. Mol Ecol. 2023:32(8):2041–2054. 10.1111/mec.16849. PubMed DOI

Valnisty  AA, Homel  KV, Kheidorova  EE, Molchan  VO, Nikiforov  MY. Between the lines: mitochondrial lineages in the heavily managed red deer population of Belarus. Mamm Biol. 2024:104(2):205–214. 10.1007/s42991-023-00397-w. DOI

Vigne  J-D. Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mamm Rev.  1992:22(2):87–96. 10.1111/j.1365-2907.1992.tb00124.x. DOI

Volodin  I, Volodina  E, Frey  R, Carranza  J, Torres-Porras  J. Spectrographic analysis points to source–filter coupling in rutting roars of Iberian red deer. acta ethol. 2013:16(1):57–63. 10.1007/s10211-012-0133-1. DOI

Volodin  IA, Nahlik  A, Tari  T, Frey  R, Volodina  EV. Rutting roars in native Pannonian red deer of Southern Hungary and the evidence of acoustic divergence of male sexual vocalization between Eastern and Western European red deer (Cervus elaphus). Mamm Biol.  2019:94:54–65. 10.1016/j.mambio.2018.10.009. DOI

Webster  TH, Wilson Sayres  MA. Genomic signatures of sex-biased demography: progress and prospects. Curr Opin Genet Dev.  2016:41:62–71. 10.1016/j.gde.2016.08.002. PubMed DOI

Xia  Q, Guo  Y, Zhang  Z, Li  D, Xuan  Z, Li  Z, Dai  F, Li  Y, Cheng  D, Li  R, et al.  Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science. 2009:326(5951):433–436. 10.1126/science.1176620. PubMed DOI PMC

Zachos  FE, Frantz  AC, Kuehn  R, Bertouille  S, Colyn  M, Niedziałkowska  M, Pérez-González  J, Skog  A, Sprĕm  N, Flamand  M-C. Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J Hered. 2016:107(4):318–326. 10.1093/jhered/esw011. PubMed DOI PMC

Zachos  FE, Hajji  GM, Hmwe  SS, Hartl  GB, Lorenzini  R, Mattioli  S. Population viability analysis and genetic diversity of the endangered red deer Cervus elaphus population from Mesola, Italy. Wildlife Biol.  2009:15(2):175–186. 10.2981/07-075. DOI

Zink  RM. Drawbacks with the use of microsatellites in phylogeography: the song sparrow Melospiza melodia as a case study. J Avian Biol.  2010:41(1):1–7. 10.1111/j.1600-048X.2009.04903.x. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...