Red Deer Resequencing Reveals the Importance of Sex Chromosomes for Reconstructing Late Quaternary Events
Language English Country United States Media print
Document type Journal Article
Grant support
Hesse's funding program LOEWE
PRG1209
Leibniz Association
Estonian Ministry of Education and Research
2016/23/N/NZ8/03995
Polish National Science Centre
DNRF173
Danish National Research Foundation
PubMed
39908346
PubMed Central
PMC11879036
DOI
10.1093/molbev/msaf031
PII: 8002771
Knihovny.cz E-resources
- Keywords
- phylogeography, population genomics, postglacial recolonization,
- MeSH
- X Chromosome genetics MeSH
- Phylogeography MeSH
- Genetic Variation MeSH
- Sex Chromosomes * genetics MeSH
- Genetics, Population MeSH
- Gene Flow MeSH
- Deer * genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Sex chromosomes differ in their inheritance properties from autosomes and hence may encode complementary information about past demographic events. We compiled and analyzed a range-wide resequencing data set of the red deer (Cervus elaphus), one of the few Eurasian herbivores of the Late Pleistocene megafauna still found throughout much of its historic range. Our analyses of 144 whole genomes reveal striking discrepancies between the population clusters suggested by autosomal and X-chromosomal data. We postulate that the genetic legacy of Late Glacial population structure is better captured and preserved by the X chromosome than by autosomes, for two reasons. First, X chromosomes have a lower Ne and hence lose genetic variation faster during isolation in glacial refugia, causing increased population differentiation. Second, following postglacial recolonization and secondary contact, immigrant males pass on their X chromosomes to female offspring only, which effectively halves the migration rate when gene flow is male mediated. Our study illustrates how a comparison between autosomal and sex chromosomal phylogeographic signals unravels past demographic processes that otherwise would remain hidden.
Biodiversity and Climate Research Center Senckenberg Institute Frankfurt am Main 60325 Germany
Biology and Ethology Unit Faculty of Veterinary University of Extremadura Caceres Spain
Department of Animal and Food Science Universitat Autònoma de Barcelona Barcelona 08193 Spain
Department of Archaeology and Heritage Studies Aarhus University Højbjerg DK 8270 Denmark
Department of Chemistry and Bioscience Aalborg University Aalborg 9220 Denmark
Department of Evolutionary Biology University of Vienna Vienna Austria
Department of Genetics University of the Free State Bloemfontein South Africa
Department of Mammal Collection Natural History Museum Vienna Vienna Austria
Department of Natural Resources Isfahan University of Technology Isfahan Iran
Department of Veterinary Medicine University of Sassari Sassari 07100 Italy
Department of Zoology State Museum of Natural History Stuttgart Stuttgart 70191 Germany
Dept of Ecology and Genetics Uppsala University Uppsala SE 75236 Sweden
Domaine National de Chambord Chambord France
Faculty of Environmental Protection Velenje 3320 Slovenia
Faculty of Forestry University of Belgrade Belgrade 11000 Serbia
Institute for Ecology Evolution and Diversity Goethe University Frankfurt am Main Germany
Institute of Ecology Ilia State University Tbilisi 0162 Georgia
Institute of Vertebrate Biology Czech Academy of Sciences Brno 603 00 Czech Republic
Instituto de Investigación en Recursos Cinegéticos IREC Ciudad Real Spain
Mammal Research Institute Polish Academy of Sciences Białowieża 17 230 Poland
Max Perutz Labs Vienna BioCentre Vienna 1030 Austria
School of Archaeology University College Dublin Dublin 4 Ireland
Scientific Research Center Musee National d'Histoire Naturelle Luxembourg L 2160 Luxembourg
Tbilisi Zoo Tbilisi 0171 Georgia
The Faculty of Veterinary Medicine University of Zagreb Zagreb Croatia
Tierpark Berlin Friedrichsfelde GmbH Berlin 10319 Germany
Wildlife Ecology and Conservation Group Wageningen University Wageningen PB 6708 The Netherlands
See more in PubMed
Arntzen JW, de Vries W, Canestrelli D, Martínez-Solano I. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Mol Ecol. 2017:26(20):5663–5675. 10.1111/mec.14273. PubMed DOI
Bailey G, Andersen SH, Maarleveld TJ. Denmark: mesolithic coastal landscapes submerged. In: Bailey G, Galanidou N, Peeters H, Jöns H, Mennenga M, editors. The archaeology of Europe’s drowned landscapes. Cham: Springer International Publishing; 2020. p. 39–76.
Barton NH. The dynamics of hybrid zones. Heredity (Edinb). 1979:43(3):341–359. 10.1038/hdy.1979.87. DOI
Barton NH, Hewitt GM. Analysis of hybrid zones. Annu Rev Ecol Syst. 1985:16(1):113–148. 10.1146/annurev.es.16.110185.000553. DOI
Bertl J, Ringbauer H, Blum MGB. Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. 2018:6:e5325. 10.7717/peerj.5325. PubMed DOI PMC
Bhagwat SA, Willis KJ. Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J Biogeogr. 2008:35(3):464–482. 10.1111/j.1365-2699.2007.01861.x. DOI
Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, Baston D, Rouault E, Warmerdam F, Ooms J, et al. 2021. rgdal: Bindings for the “Geospatial” Data Abstraction Library. [accessed 2024 April]. https://CRAN.R-project.org/package=rgd.
Björck S. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int. 1995:27:19–40. 10.1016/1040-6182(94)00057-C. DOI
Borowik T, Wawrzyniak P, Jędrzejewska B. Red deer (Cervus elaphus) fertility and survival of young in a low-density population subject to predation and hunting. J Mammal. 2016:97(6):1671–1681. 10.1093/jmammal/gyw133. DOI
Borowski Z, Świsłocka M, Matosiuk M, Mirski P, Krysiuk K, Czajkowska M, Borkowska A, Ratkiewicz M. Purifying selection, density blocking and unnoticed mitochondrial DNA diversity in the red deer, Cervus elaphus. PLoS One. 2016:11(9):e0163191. 10.1371/journal.pone.0163191. PubMed DOI PMC
Britton T, Oxelman B, Vinnersten A, Bremer K. Phylogenetic dating with confidence intervals using mean path lengths. Mol Phylogenet Evol. 2002:24(1):58–65. 10.1016/S1055-7903(02)00268-3. PubMed DOI
Carden RF, McDevitt AD, Zachos FE, Woodman PC, O’Toole P, Rose H, Monaghan NT, Campana MG, Bradley DG, Edwards CJ. Phylogeographic, ancient DNA, fossil and morphometric analyses reveal ancient and modern introductions of a large mammal: the complex case of red deer (Cervus elaphus) in Ireland. Quat Sci Rev. 2012:42:74–84. 10.1016/j.quascirev.2012.02.012. DOI
Carranza J, Pérez-González J, Anaya G, de Jong M, Broggini C, Zachos FE, McDevitt AD, Niedziałkowska M, Sykut M, Csányi S, et al. Genome-wide SNP assessment of contemporary European red deer genetic structure highlights the distinction of peripheral populations and the main admixture zones in Europe. Mol Ecol. 2024:33(18):e17508. 10.1111/mec.17508. PubMed DOI
Carranza J, Salinas M, de Andrés D, Pérez-González J. Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol Evol. 2016:6(4):905–922. 10.1002/ece3.1836. PubMed DOI PMC
Çoraman E, Dietz C, Hempel E, Ghazaryan A, Levin E, Presetnik P, Zagmajster M, Mayer F. Reticulate evolutionary history of a Western Palaearctic Bat Complex explained by multiple mtDNA introgressions in secondary contacts. J Biogeogr. 2019:46(2):343–354. 10.1111/jbi.13509. DOI
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format and VCFtools. Bioinformatics. 2011:27(15):2156–2158. 10.1093/bioinformatics/btr330. PubMed DOI PMC
de Jong JF, van Hooft P, Megens H-J, Crooijmans RPMA, de Groot GA, Pemberton JM, Huisman J, Bartoš L, Iacolina L, van Wieren SE, et al. Fragmentation and translocation distort the genetic landscape of ungulates: red deer in the Netherlands. Front Ecol Evol. 2020:8:535715. 10.3389/fevo.2020.535715. DOI
de Jong MJ, de Jong JF, Hoelzel AR, Janke A. Sambar: an R package for fast, easy and reproducible population-genetic analyses of biallelic SNP data sets. Mol Ecol Resour. 2021:21(4):1369–1379. 10.1111/1755-0998.13339. PubMed DOI
de Jong MJ, Niamir A, Wolf M, Kitchener AC, Lecomte N, Seryodkin IV, Fain SR, Hagen SB, Saarma U, Janke A. Range-wide whole-genome resequencing of the brown bear reveals drivers of intraspecies divergence. Commun Biol. 2023:6(1):153. 10.1038/s42003-023-04514-w. PubMed DOI PMC
de Jong MJ, van Oosterhout C, Hoelzel R, Janke A. Calculating and interpreting FST in the genomics era. bioRxiv 614506. 10.1101/2024.09.24.614506, 24 September 2024, preprint: not peer reviewed. DOI
Della Libera M, Passilongo D, Reby D. Acoustics of male rutting roars in the endangered population of Mesola red deer Cervus elaphus italicus. Mamm Biol. 2015:80(5):395–400. 10.1016/j.mambio.2015.05.001. DOI
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011:43(5):491–498. 10.1038/ng.806. PubMed DOI PMC
Doan K, Niedziałkowska M, Stefaniak K, Sykut M, Jędrzejewska B, Ratajczak-Skrzatek U, Piotrowska N, Ridush B, Zachos FE, Popović D, et al. Phylogenetics and phylogeography of red deer mtDNA lineages during the last 50 000 years in Eurasia. Zool J Linn Soc. 2022:194(2):431–456. 10.1093/zoolinnean/zlab025. DOI
Doan K, Zachos FE, Wilkens B, Vigne J-D, Piotrowska N, Stanković A, Jędrzejewska B, Stefaniak K, Niedziałkowska M. Phylogeography of the Tyrrhenian red deer (Cervus elaphus corsicanus) resolved using ancient DNA of radiocarbon-dated subfossils. Sci Rep. 2017:7(1):2331. 10.1038/s41598-017-02359-y. PubMed DOI PMC
Eckert AJ, Carstens BC. Does gene flow destroy phylogenetic signal? The performance of three methods for estimating species phylogenies in the presence of gene flow. Mol Phylogenet Evol. 2008:49(3):832–842. 10.1016/j.ympev.2008.09.008. PubMed DOI
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016:32(19):3047–3048. 10.1093/bioinformatics/btw354. PubMed DOI PMC
Fernández-Garcia M, Pederzani S, Britton K, Agudo-Perez L, Cicero A, Geiling J, Daura J, Sanz-Borras M, Marin-Arroyo AB. Palaeoecology of ungulates in northern Iberia during the Late Pleistocene through isotopic analysis of teeth. Biogeosci Discuss. 2024;21(19):4413–4437. 10.5194/bg-21-4413-2024. DOI
Fickel J, Bubliy OA, Stache A, Noventa T, Jirsa A, Heurich M. Crossing the border? Structure of the red deer (Cervus elaphus) population from the Bavarian–Bohemian forest ecosystem. Mamm Biol. 2012:77(3):211–220. 10.1016/j.mambio.2011.11.005. DOI
Fordham DA, Saltré F, Haythorne S, Wigley TML, Otto-Bliesner BL, Chan KC, Brook BW. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography. 2017:40(11):1348–1358. 10.1111/ecog.03031. DOI
Frantz AC, Hamann J-L, Klein F. Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. Eur J Wildl Res. 2008:54(1):44–52. 10.1007/s10344-007-0107-1. DOI
Frey R, Volodin I, Volodina E, Carranza J, Torres-Porras J. Vocal anatomy, tongue protrusion behaviour and the acoustics of rutting roars in free-ranging Iberian red deer stags (Cervus elaphus hispanicus). J Anat. 2012:220(3):271–292. 10.1111/j.1469-7580.2011.01467.x. PubMed DOI PMC
Frichot E, François O. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol. 2015:6(8):925–929. 10.1111/2041-210X.12382. DOI
Geist V. Deer of the world: their evolution, behaviour and ecology. 1st ed. Shrewsbury: Swan Hill Press; 1999.
Geptner VG; Nasimovich . 1988. Mammals of the Soviet Union v. 2, pt. 1a (1998). [accessed 2024 April]. https://library.si.edu/digital-library/book/mammalsofsov211998gept.
Haanes H, Røed KH, Perez-Espona S, Rosef O. Low genetic variation support bottlenecks in Scandinavian red deer. Eur J Wildl Res. 2011:57(6):1137–1150. 10.1007/s10344-011-0527-9. DOI
Hajji GM, Zachos FE, Charfi-Cheikrouha F, Hartl GB. Conservation genetics of the imperilled Barbary red deer in Tunisia. Anim Conserv. 2007:10(2):229–235. 10.1111/j.1469-1795.2007.00098.x. DOI
Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc Lond. 1996:58(3):247–276. 10.1006/bijl.1996.0035. DOI
Hewitt GM. Post-glacial re-colonization of European biota. Biol J Linn Soc Lond. 1999:68(1-2):87–112. 10.1111/j.1095-8312.1999.tb01160.x. DOI
Hijmans RJ. 2019. raster: Geographic Data Analysis and Modeling. [accessed 2024 April]. https://CRAN.R-project.org/package=raster.
Hijmans RJ, Phillips S, Leathwick J, Elith J. 2020. dismo: Species Distribution Modeling. [accessed 2024 April]. https://CRAN.R-project.org/package=dismo.
Höglund J, Cortazar-Chinarro M, Jarnemo A, Thulin C-G. Genetic variation and structure in Scandinavian red deer (Cervus elaphus): influence of ancestry, past hunting, and restoration management. Biol J Linn Soc Lond. 2013:109(1):43–53. 10.1111/bij.12049. DOI
Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet. 2009:10(9):639–650. 10.1038/nrg2611. PubMed DOI PMC
Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992:132(2):583–589. 10.1093/genetics/132.2.583. PubMed DOI PMC
Jarnemo A. Seasonal migration of male red deer (Cervus elaphus) in southern Sweden and consequences for management. Eur J Wildl Res. 2008:54(2):327–333. 10.1007/s10344-007-0154-7. DOI
Jarnemo A. Male red deer (Cervus elaphus) dispersal during the breeding season. J Ethol. 2011:29(2):329–336. 10.1007/s10164-010-0262-9. DOI
Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008:24(11):1403–1405. 10.1093/bioinformatics/btn129. PubMed DOI
Kamler JF, Jędrzejewska B, JĘdrzejewski W. Factors affecting daily ranges of red deer Cervus elaphus in Białowieża Primeval Forest, Poland. Acta Theriol. 2007:52(2):113–118. 10.1007/BF03194206. DOI
Karaiskou N, Tsakogiannis A, Gkagkavouzis K, Operator of Parnitha National Park; Papika S, Latsoudis P, Kavakiotis I, Pantis J, Abatzopoulos TJ, Triantaphyllidis C, et al. Greece: a Balkan subrefuge for a remnant red deer (Cervus elaphus) population. J Hered. 2014:105(3):334–344. 10.1093/jhered/esu007. PubMed DOI
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017:4(1):170122. 10.1038/sdata.2017.122. PubMed DOI PMC
Kierepka EM, Preckler-Quisquater S, Reding DM, Piaggio AJ, Riley SPD, Sacks BN. Genomic analyses of gray fox lineages suggest ancient divergence and secondary contact in the southern Great Plains. J Hered. 2023:114(2):110–119. 10.1093/jhered/esac060. PubMed DOI
Krojerová-Prokešová J, Barančeková M, Koubek P. Admixture of Eastern and Western European red deer lineages as a result of postglacial recolonization of the Czech Republic (central Europe). J Hered. 2015:106(4):375–385. 10.1093/jhered/esv018. PubMed DOI
Kropil R, Smolko P, Garaj P. Home range and migration patterns of male red deer Cervus elaphus in Western Carpathians. Eur J Wildl Res. 2015:61(1):63–72. 10.1007/s10344-014-0874-4. DOI
Laan M, Wiebe V, Khusnutdinova E, Remm M, Pääbo S. X-chromosome as a marker for population history: linkage disequilibrium and haplotype study in Eurasian populations. Eur J Hum Genet. 2005:13(4):452–462. 10.1038/sj.ejhg.5201340. PubMed DOI PMC
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011a:27(21):2987–2993. 10.1093/bioinformatics/btr509. PubMed DOI PMC
Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 2011b:27(5):718–719. 10.1093/bioinformatics/btq671. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009:25(14):1754–1760. 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009:25(16):2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC
Liu J, Shen Q, Bao H. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens. PLoS One. 2022:17(1):e0262574. 10.1371/journal.pone.0262574. PubMed DOI PMC
Loe LE, Mysterud A, Veiberg V, Langvatn R. Negative density-dependent emigration of males in an increasing red deer population. Proc R Soc Lond B Biol Sci. 2009:276(1667):2581–2587. 10.1098/rspb.2009.0224. PubMed DOI PMC
Ludt CJ, Schroeder W, Rottmann O, Kuehn R. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol. 2004:31(3):1064–1083. 10.1016/j.ympev.2003.10.003. PubMed DOI
Mackiewicz P, Matosiuk M, Świsłocka M, Zachos FE, Hajji GM, Saveljev AP, Seryodkin IV, Farahvash T, Rezaei HR, Torshizi RV, et al. Phylogeny and evolution of the genus Cervus (Cervidae, Mammalia) as revealed by complete mitochondrial genomes. Sci Rep. 2022:12(1):16381. 10.1038/s41598-022-20763-x. PubMed DOI PMC
Masonbrink RE, Alt D, Bayles DO, Boggiatto P, Edwards W, Tatum F, Williams J, Wilson-Welder J, Zimin A, Severin A, et al. A pseudomolecule assembly of the Rocky Mountain elk genome. PLoS One. 2021:16(4):e0249899. 10.1371/journal.pone.0249899. PubMed DOI PMC
McDevitt AD, Coscia I, Browett SS, Ruiz-González A, Statham MJ, Ruczyńska I, Roberts L, Stojak J, Frantz AC, Norén K, et al. Next-generation phylogeography resolves post-glacial colonization patterns in a widespread carnivore, the red fox (Vulpes vulpes), in Europe. Mol Ecol. 2022:31(3):993–1006. 10.1111/mec.16276. PubMed DOI
McFarlane SE, Hunter DC, Senn HV, Smith SL, Holland R, Huisman J, Pemberton JM. Increased genetic marker density reveals high levels of admixture between red deer and introduced Japanese sika in Kintyre, Scotland. Evol Appl. 2020:13(2):432–441. 10.1111/eva.12880. PubMed DOI PMC
Meiri M, Kosintsev P, Conroy K, Meiri S, Barnes I, Lister A. Subspecies dynamics in space and time: a study of the red deer complex using ancient and modern DNA and morphology. J Biogeogr. 2017:1–14. 10.1111/jbi.13124. DOI
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020:37(5):1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC
Nabholz B, Glémin S, Galtier N. Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol. 2008:25(1):120–130. 10.1093/molbev/msm248. PubMed DOI
Niedziałkowska M, Doan K, Górny M, Sykut M, Stefaniak K, Piotrowska N, Jędrzejewska B, Ridush B, Pawełczyk S, Mackiewicz P, et al. Winter temperature and forest cover have shaped red deer distribution in Europe and the Ural Mountains since the Late Pleistocene. J Biogeogr. 2021:48(1):147–159. 10.1111/jbi.13989. DOI
Niedziałkowska M, Fontaine MC, Jędrzejewska B. Factors shaping gene flow in red deer (Cervus elaphus) in seminatural landscapes of central Europe. Can J Zool. 2012:90(2):150–162. 10.1139/z11-122. DOI
Niedziałkowska M, Jędrzejewska B, Honnen A-C, Otto T, Sidorovich VE, Perzanowski K, Skog A, Hartl GB, Borowik T, Bunevich AN, et al. . Molecular biogeography of red deer Cervus elaphus from eastern Europe: insights from mitochondrial DNA sequences. Acta Theriol (Warsz). 2011:56(1):1–12. 10.1007/s13364-010-0002-0. PubMed DOI PMC
Nieto Feliner G. Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspect Plant Ecol Evol Syst. 2014:16(5):265–278. 10.1016/j.ppees.2014.07.002. DOI
Nilsson B, Hansson A, Sjöström A. Sweden: submerged landscapes of the early mesolithic. In: Bailey G, Galanidou N, Peeters H, Jöns H, Mennenga M, editors. The archaeology of Europe’s drowned landscapes. Cham: Springer International Publishing; 2020. p. 77–93.
Nussey DH, Coltman DW, Coulson T, Kruuk LEB, Donald A, Morris SJ, Clutton-Brock TH, Pemberton J. Rapidly declining fine-scale spatial genetic structure in female red deer. Mol Ecol. 2005:14(11):3395–3405. 10.1111/j.1365-294X.2005.02692.x. PubMed DOI
Nussey DH, Pemberton J, Donald A, Kruuk LEB. Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity (Edinb). 2006:97(1):56–65. 10.1038/sj.hdy.6800838. PubMed DOI
Ortiz EM. 2019. vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. [accessed 2024 April]. https://zenodo.org/records/2540861.
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018:35(3):526–528. 10.1093/bioinformatics/bty633. PubMed DOI
Passilongo D, Reby D, Carranza J, Apollonio M. Roaring high and low: composition and possible functions of the Iberian stag’s vocal repertoire. PLoS One. 2013:8(5):e63841. 10.1371/journal.pone.0063841. PubMed DOI PMC
Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T, Reich D. Ancient admixture in human history. Genetics. 2012:192(3):1065–1093. 10.1534/genetics.112.145037. PubMed DOI PMC
Pérez-Espona S, Pérez-Barbería FJ, Goodall-Copestake WP, Jiggins CD, Gordon IJ, Pemberton JM. Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey. Heredity (Edinb). 2009:102(2):199–210. 10.1038/hdy.2008.111. PubMed DOI
Pérez-Espona S, Pérez-Barbería FJ, Mcleod JE, Jiggins CD, Gordon IJ, Pemberton JM. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol. 2008:17(4):981–996. 10.1111/j.1365-294X.2007.03629.x. PubMed DOI
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006:190(3-4):231–259. 10.1016/j.ecolmodel.2005.03.026. DOI
Preckler-Quisquater S, Kierepka EM, Reding DM, Piaggio AJ, Sacks BN. Can demographic histories explain long-term isolation and recent pulses of asymmetric gene flow between highly divergent grey fox lineages? Mol Ecol. 2023:32(19):5323–5337. 10.1111/mec.17105. PubMed DOI
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007:81(3):559–575. 10.1086/519795. PubMed DOI PMC
Queirós J, Acevedo P, Santos JPV, Barasona J, Beltran-Beck B, González-Barrio D, Armenteros JA, Diez-Delgado I, Boadella M, de Mera IF, et al. Red deer in Iberia: molecular ecological studies in a southern refugium and inferences on European postglacial colonization history. PLoS One. 2019:14(1):e0210282. 10.1371/journal.pone.0210282. PubMed DOI PMC
Ramos MA, Lobo JM, Esteban M. Ten years inventorying the Iberian fauna: results and perspectives. Biodivers Conserv. 2001:10(1):19–28. 10.1023/A:1016658804566. DOI
R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.
Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature. 2009:461(7263):489–494. 10.1038/nature08365. PubMed DOI PMC
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016:9(1):88. 10.1186/s13104-016-1900-2. PubMed DOI PMC
Shi M-M, Chen X-Y. Leading-edge populations do not show low genetic diversity or high differentiation in a wind-pollinated tree. Popul Ecol. 2012:54(4):591–600. 10.1007/s10144-012-0332-7. DOI
Skog A, Zachos FE, Rueness EK, Feulner PGD, Mysterud A, Langvatn R, Lorenzini R, Hmwe SS, Lehoczky I, Hartl GB, et al. Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr. 2009:36(1):66–77. 10.1111/j.1365-2699.2008.01986.x. DOI
Sommer RS, Nadachowski A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev. 2006:36(4):251–265. 10.1111/j.1365-2907.2006.00093.x. DOI
Sommer RS, Zachos FE. Fossil evidence and phylogeography of temperate species: ‘glacial refugia’ and post-glacial recolonization. J Biogeogr. 2009:36(11):2013–2020. 10.1111/j.1365-2699.2009.02187.x. DOI
Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N. Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev. 2008:27(7-8):714–733. 10.1016/j.quascirev.2007.11.016. DOI
Stankowski S, Chase MA, McIntosh H, Streisfeld MA. Integrating top-down and bottom-up approaches to understand the genetic architecture of speciation across a monkeyflower hybrid zone. Mol Ecol. 2023:32(8):2041–2054. 10.1111/mec.16849. PubMed DOI
Valnisty AA, Homel KV, Kheidorova EE, Molchan VO, Nikiforov MY. Between the lines: mitochondrial lineages in the heavily managed red deer population of Belarus. Mamm Biol. 2024:104(2):205–214. 10.1007/s42991-023-00397-w. DOI
Vigne J-D. Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mamm Rev. 1992:22(2):87–96. 10.1111/j.1365-2907.1992.tb00124.x. DOI
Volodin I, Volodina E, Frey R, Carranza J, Torres-Porras J. Spectrographic analysis points to source–filter coupling in rutting roars of Iberian red deer. acta ethol. 2013:16(1):57–63. 10.1007/s10211-012-0133-1. DOI
Volodin IA, Nahlik A, Tari T, Frey R, Volodina EV. Rutting roars in native Pannonian red deer of Southern Hungary and the evidence of acoustic divergence of male sexual vocalization between Eastern and Western European red deer (Cervus elaphus). Mamm Biol. 2019:94:54–65. 10.1016/j.mambio.2018.10.009. DOI
Webster TH, Wilson Sayres MA. Genomic signatures of sex-biased demography: progress and prospects. Curr Opin Genet Dev. 2016:41:62–71. 10.1016/j.gde.2016.08.002. PubMed DOI
Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science. 2009:326(5951):433–436. 10.1126/science.1176620. PubMed DOI PMC
Zachos FE, Frantz AC, Kuehn R, Bertouille S, Colyn M, Niedziałkowska M, Pérez-González J, Skog A, Sprĕm N, Flamand M-C. Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J Hered. 2016:107(4):318–326. 10.1093/jhered/esw011. PubMed DOI PMC
Zachos FE, Hajji GM, Hmwe SS, Hartl GB, Lorenzini R, Mattioli S. Population viability analysis and genetic diversity of the endangered red deer Cervus elaphus population from Mesola, Italy. Wildlife Biol. 2009:15(2):175–186. 10.2981/07-075. DOI
Zink RM. Drawbacks with the use of microsatellites in phylogeography: the song sparrow Melospiza melodia as a case study. J Avian Biol. 2010:41(1):1–7. 10.1111/j.1600-048X.2009.04903.x. DOI