Decoration of Silver Nanoparticles on WS2-WO3 Nanosheets: Implications for Surface-Enhanced Resonance Raman Spectroscopy Detection and Material Characteristics
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
J001019
Fund for Scientific Research
PubMed
39942633
PubMed Central
PMC11820258
DOI
10.3390/molecules30030530
PII: molecules30030530
Knihovny.cz E-resources
- Keywords
- Raman, Rhodamine B RhB, SEM, XPS, silver nanoparticles Ag(NPs), surface-enhanced-Raman resonance scattering SERRS, tungsten disulfide WS2, tungsten trioxide WO3, vertically-aligned,
- Publication type
- Journal Article MeSH
This study investigates the chemical and structural modifications of vertically aligned tungsten disulfide-tungsten trioxide (WS2-WO3) nanosheets decorated with silver nanoparticles (Ag(NPs)) under nitrogen plasma conditions. The synthesized vertically aligned WS2-WO3 nanosheets were functionalized through direct-current (DC) magnetron sputtering, forming silver-decorated samples. Structural changes, as well as the size and distribution of Ag(NPs), were characterized using scanning electron microscopy (SEM). Chemical state analysis was conducted via X-ray photoelectron spectroscopy (XPS), while Raman spectroscopy was employed to investigate vibrational modes. The findings confirmed the successful decoration of Ag(NPs) and identified unexpected compound transformations that were dependent on the duration of functionalization. The synthesized and functionalized samples were evaluated for their sensing capabilities towards Rhodamine B (RhB) through surface-enhanced resonance Raman scattering (SERRS). This study discusses the impact of substrate morphology and the shape and size of nanoparticles on the enhancement of SERRS mechanisms, achieving an enhancement factor (EF) of approximately 1.6 × 106 and a limit of detection (LOD) of 10-9 M.
See more in PubMed
Cong C., Shang J., Wang Y., Yu T. Optical Properties of 2D Semiconductor WS2. Adv. Opt. Mater. 2018;6:1700767. doi: 10.1002/adom.201700767. DOI
Li J.F., Huang Y.F., Ding Y., Yang Z.L., Li S.B., Zhou X.S., Fan F.R., Zhang W., Zhou Z.Y., Wu D.Y., et al. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Nature. 2010;464:392–395. doi: 10.1038/nature08907. PubMed DOI
Alessandri I., Lombardi J.R. Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016;116:14921–14981. doi: 10.1021/acs.chemrev.6b00365. PubMed DOI
Guarrotxena N., Bazan G.C. Antitags: SERS-Encoded Nanoparticle Assemblies That Enable Single-Spot Multiplex Protein Detection. Adv. Mater. 2014;26:1941–1946. doi: 10.1002/adma.201304107. PubMed DOI
Withers F., Bointon T.H., Hudson D.C., Craciun M.F., Russo S. Electron Transport of WS2 Transistors in a Hexagonal Boron Nitride Dielectric Environment. Sci. Rep. 2014;4:4967. doi: 10.1038/srep04967. DOI
Liu X., Hu J., Yue C., Della Fera N., Ling Y., Mao Z., Wei J. High Performance Field-Effect Transistor Based on Multilayer Tungsten Disulfide. ACS Nano. 2014;8:10396–10402. doi: 10.1021/nn505253p. PubMed DOI
Ovchinnikov D., Allain A., Huang Y.-S., Dumcenco D., Kis A. Electrical Transport Properties of Single-Layer WS2. ACS Nano. 2014;8:8174–8181. doi: 10.1021/nn502362b. PubMed DOI
Peimyoo N., Shang J., Cong C., Shen X., Wu X., Yeow E.K.L., Yu T. Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles. ACS Nano. 2013;7:10985–10994. doi: 10.1021/nn4046002. PubMed DOI
Cong S., Yuan Y., Chen Z., Hou J., Yang M., Su Y., Zhang Y., Li L., Li Q., Geng F., et al. Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies. Nat. Commun. 2015;6:7800. doi: 10.1038/ncomms8800. PubMed DOI PMC
Zheng Z., Cong S., Gong W., Xuan J., Li G., Lu W., Geng F., Zhao Z. Semiconductor SERS Enhancement Enabled by Oxygen Incorporation. Nat. Commun. 2017;8:1993. doi: 10.1038/s41467-017-02166-z. PubMed DOI PMC
Nath D., Banerjee P. Green Nanotechnology—A New Hope for Medical Biology. Environ. Toxicol. Pharmacol. 2013;36:997–1014. doi: 10.1016/j.etap.2013.09.002. PubMed DOI
Cho S.-Y., Kim S.J., Lee Y., Kim J.-S., Jung W.-B., Yoo H.-W., Kim J., Jung H.-T. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers. ACS Nano. 2015;9:9314–9321. doi: 10.1021/acsnano.5b04504. PubMed DOI
Remškar M., Iskra I., Jelenc J., Škapin S.D., Višić B., Varlec A., Kržan A. A Novel Structure of Polyvinylidene Fluoride (PVDF) Stabilized by MoS2 Nanotubes. Soft Matter. 2013;9:8647. doi: 10.1039/c3sm51279g. DOI
Al Youssef K., Das A., Colomer J.-F., Hemberg A., Noirfalise X., Bittencourt C. Silver Decoration of Vertically Aligned MoS2-MoOx Nanosheets: A Comprehensive XPS Investigation. Materials. 2024;17:2882. doi: 10.3390/ma17122882. PubMed DOI PMC
Zhang D., Wu Y.-C., Yang M., Liu X., Coileáin C.Ó., Abid M., Abid M., Wang J.-J., Shvets I., Xu H., et al. Surface Enhanced Raman Scattering of Monolayer MX2 with Metallic Nano-Particles. Sci. Rep. 2016;6:30320. doi: 10.1038/srep30320. PubMed DOI PMC
Song Y., Huang H.-C., Lu W., Li N., Su J., Cheng S.-B., Lai Y., Chen J., Zhan J. Ag@WS2 Quantum Dots for Surface Enhanced Raman Spectroscopy: Enhanced Charge Transfer Induced Highly Sensitive Detection of Thiram from Honey and Beverages. Food Chem. 2021;344:128570. doi: 10.1016/j.foodchem.2020.128570. PubMed DOI
He R.X., Liang R., Peng P., Norman Zhou Y. Effect of the Size of Silver Nanoparticles on SERS Signal Enhancement. J. Nanoparticle Res. 2017;19:267. doi: 10.1007/s11051-017-3953-0. DOI
Sigmund P. Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets. Phys. Rev. 1969;184:383–416. doi: 10.1103/PhysRev.184.383. DOI
Zhou W., Zou X., Najmaei S., Liu Z., Shi Y., Kong J., Lou J., Ajayan P.M., Yakobson B.I., Idrobo J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 2013;13:2615–2622. doi: 10.1021/nl4007479. PubMed DOI
Fang D., He F., Xie J., Xue L. Calibration of Binding Energy Positions with C1s for XPS Results. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020;35:711–718. doi: 10.1007/s11595-020-2312-7. DOI
Ristova M., Ristov M. XPS Profile Analysis on CdS Thin Film Modified with Ag by an Ion Exchange. Appl. Surf. Sci. 2001;181:68–77. doi: 10.1016/S0169-4332(01)00357-9. DOI
Stevens J.S., Byard S.J., Seaton C.C., Sadiq G., Davey R.J., Schroeder S.L.M. Proton Transfer and Hydrogen Bonding in the Organic Solid State: A Combined XRD/XPS/ssNMR Study of 17 Organic Acid–Base Complexes. Phys. Chem. Chem. Phys. 2014;16:1150–1160. doi: 10.1039/C3CP53907E. PubMed DOI
Mahler B., Hoepfner V., Liao K., Ozin G.A. Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2014;136:14121–14127. doi: 10.1021/ja506261t. PubMed DOI
Titantah J.T., Lamoen D. Carbon and Nitrogen 1s Energy Levels in Amorphous Carbon Nitride Systems: XPS Interpretation Using First-Principles. Diam. Relat. Mater. 2007;16:581–588. doi: 10.1016/j.diamond.2006.11.048. DOI
Boyen H.-G., Ethirajan A., Kästle G., Weigl F., Ziemann P., Schmid G., Garnier M.G., Büttner M., Oelhafen P. Alloy Formation of Supported Gold Nanoparticles at Their Transition from Clusters to Solids: Does Size Matter? Phys. Rev. Lett. 2005;94:016804. doi: 10.1103/PhysRevLett.94.016804. PubMed DOI
Woodruff P. Surface Science and Synchrotron Radiation. IOP Publishing; Bristol, UK: 2023. Photoemission and the Electronic Structure of Surfaces.
Guan Y., Yao H., Zhan H., Wang H., Zhou Y., Kang J. Optoelectronic Properties and Strain Regulation of the 2D WS2/ZnO van Der Waals Heterostructure. RSC Adv. 2021;11:14085–14092. doi: 10.1039/D1RA01877A. PubMed DOI PMC
Krivosheeva A., Shaposhnikov V., Borisenko V., Lazzari J.-L. Energy Band Gap Tuning in Te-Doped WS2/WSe2 Heterostructures. J. Mater. Sci. 2020;55:9695–9702. doi: 10.1007/s10853-020-04485-x. DOI
Niklasson G.A., Granqvist C.G. Electrochromics for Smart Windows: Thin Films of Tungsten Oxide and Nickel Oxide, and Devices Based on These. J. Mater. Chem. 2007;17:127–156. doi: 10.1039/B612174H. DOI
Wang S.L., Zhu Y., Luo X., Huang Y., Chai J., Wong T.I., Xu G.Q. 2D WC/WO3 Heterogeneous Hybrid for Photocatalytic Decomposition of Organic Compounds with Vis–NIR Light. Adv. Funct. Mater. 2018;28:1705357. doi: 10.1002/adfm.201705357. DOI
Yeh J.J., Lindau I. Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables. 1985;32:1–155. doi: 10.1016/0092-640X(85)90016-6. DOI
Nguyen Van C., Do T.H., Chen J.-W., Tzeng W.-Y., Tsai K.-A., Song H., Liu H.-J., Lin Y.-C., Chen Y.-C., Wu C.-L., et al. WO3 Mesocrystal-Assisted Photoelectrochemical Activity of BiVO4. NPG Asia Mater. 2017;9:e357. doi: 10.1038/am.2017.15. DOI
Verble J.L., Wieting T.J. Lattice Mode Degeneracy in MoS2 and Other Layer Compounds. Phys. Rev. Lett. 1970;25:362–365. doi: 10.1103/PhysRevLett.25.362. DOI
Molina-Sánchez A., Wirtz L. Phonons in Single-Layer and Few-Layer MoS2 and WS2. Phys. Rev. B. 2011;84:155413. doi: 10.1103/PhysRevB.84.155413. DOI
Lambert D.K. Vibrational Stark Effect of Adsorbates at Electrochemical Interfaces. Electrochim. Acta. 1996;41:623–630. doi: 10.1016/0013-4686(95)00349-5. DOI
Zeng H., Liu G.-B., Dai J., Yan Y., Zhu B., He R., Xie L., Xu S., Chen X., Yao W., et al. Optical Signature of Symmetry Variations and Spin-Valley Coupling in Atomically Thin Tungsten Dichalcogenides. Sci. Rep. 2013;3:1608. doi: 10.1038/srep01608. PubMed DOI PMC
Qiao S., Yang H., Bai Z., Peng G., Zhang X. Identifying the Number of WS2 Layers via Raman and Photoluminescence Spectrum; Proceedings of the 2017 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2017); Chongqing, China. 24–25 July 2017; Paris, France: Atlantis Press; 2017.
Ha Pham T.T., Dien N.D., Vu X.H. Facile Synthesis of Silver/Gold Alloy Nanoparticles for Ultra-Sensitive Rhodamine B Detection. RSC Adv. 2021;11:21475–21488. doi: 10.1039/D1RA02576G. PubMed DOI PMC
Zhang L., Li P., Luo L., Bu X., Wang X., Zhao B., Tian Y. Sensitive Detection of Rhodamine B in Condiments Using Surface-Enhanced Resonance Raman Scattering (SERRS) Silver Nanowires as Substrate. Appl. Spectrosc. 2017;71:2395–2403. doi: 10.1177/0003702817711700. PubMed DOI
Michaels A.M., Nirmal M., Brus L.E. Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals. J. Am. Chem. Soc. 1999;121:9932–9939. doi: 10.1021/ja992128q. DOI
Liu X., Shao Y., Tang Y., Yao K.-F. Highly Uniform and Reproducible Surface Enhanced Raman Scattering on Air-Stable Metallic Glassy Nanowire Array. Sci. Rep. 2014;4:5835. doi: 10.1038/srep05835. PubMed DOI PMC
He Y., Su S., Xu T., Zhong Y., Zapien J.A., Li J., Fan C., Lee S.-T. Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection. Nano Today. 2011;6:122–130. doi: 10.1016/j.nantod.2011.02.004. DOI
Chang C.-C., Yang K.-H., Liu Y.-C., Hsu T.-C., Mai F.-D. Surface-Enhanced Raman Scattering-Active Au/SiO2 Nanocomposites Prepared Using Sonoelectrochemical Pulse Deposition Methods. ACS Appl. Mater. Interfaces. 2012;4:4700–4707. doi: 10.1021/am3017366. PubMed DOI
Senapati S., Kaur M., Singh N., Kulkarni S.S., Singh J.P. Affordable Paper-Based Surface-Enhanced Raman Scattering Substrates Containing Silver Nanorods Using Glancing-Angle Deposition for Nosocomial Infection Detection. ACS Appl. Nano Mater. 2024;7:6736–6748. doi: 10.1021/acsanm.4c00008. DOI
Ding S.-Y., You E.-M., Tian Z.-Q., Moskovits M. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2017;46:4042–4076. doi: 10.1039/C7CS00238F. PubMed DOI
Rycenga M., Camargo P.H.C., Li W., Moran C.H., Xia Y. Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time. J. Phys. Chem. Lett. 2010;1:696–703. doi: 10.1021/jz900286a. PubMed DOI PMC
Kasture M., Sastry M., Prasad B.L.V. Halide Ion Controlled Shape Dependent Gold Nanoparticle Synthesis with Tryptophan as Reducing Agent: Enhanced Fluorescent Properties and White Light Emission. Chem. Phys. Lett. 2010;484:271–275. doi: 10.1016/j.cplett.2009.11.052. DOI
Seo D., Yoo C.I., Chung I.S., Park S.M., Ryu S., Song H. Shape Adjustment between Multiply Twinned and Single-Crystalline Polyhedral Gold Nanocrystals: Decahedra, Icosahedra, and Truncated Tetrahedra. J. Phys. Chem. C. 2008;112:2469–2475. doi: 10.1021/jp7109498. DOI
Patra T.K., Katiyar P., Singh J.K. Substrate Directed Self-Assembly of Anisotropic Nanoparticles. Chem. Eng. Sci. 2015;121:16–22. doi: 10.1016/j.ces.2014.09.023. DOI
Patra T.K., Singh J.K. Polymer Directed Aggregation and Dispersion of Anisotropic Nanoparticles. Soft Matter. 2014;10:1823. doi: 10.1039/c3sm52216d. PubMed DOI
Zhang, Horsch M.A., Lamm M.H., Glotzer S.C. Tethered Nano Building Blocks: Toward a Conceptual Framework for Nanoparticle Self-Assembly. Nano Lett. 2003;3:1341–1346. doi: 10.1021/nl034454g. DOI
Zhang Z., Glotzer S.C. Self-Assembly of Patchy Particles. Nano Lett. 2004;4:1407–1413. doi: 10.1021/nl0493500. PubMed DOI
Shi R., Liu X., Ying Y. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. J. Agric. Food Chem. 2018;66:6525–6543. doi: 10.1021/acs.jafc.7b03075. PubMed DOI
Mardare C.C., Hassel A.W. Review on the Versatility of Tungsten Oxide Coatings. Phys. Status Solidi A. 2019;216:1900047. doi: 10.1002/pssa.201900047. DOI
González-Borrero P.P., Sato F., Medina A.N., Baesso M.L., Bento A.C., Baldissera G., Persson C., Niklasson G.A., Granqvist C.G., Ferreira da Silva A. Optical Band-Gap Determination of Nanostructured WO3 Film. Appl. Phys. Lett. 2010;96:061909. doi: 10.1063/1.3313945. DOI
Subhramaniyan Rasappan A., Palanisamy R., Thangamuthu V., Pandi Dharmalingam V., Natarajan M., Archana B., Velauthapillai D., Kim J. Battery-Type WS2 Decorated WO3 Nanorods for High-Performance Supercapacitors. Mater. Lett. 2024;357:135640. doi: 10.1016/j.matlet.2023.135640. DOI
Alagh A., Annanouch F.E., Umek P., Bittencourt C., Sierra-Castillo A., Haye E., Colomer J.F., Llobet E. CVD Growth of Self-Assembled 2D and 1D WS2 Nanomaterials for the Ultrasensitive Detection of NO2. Sens. Actuators B Chem. 2021;326:128813. doi: 10.1016/j.snb.2020.128813. DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC