Modified creatine greatly increases the performance of skeletal and smooth muscles

. 2025 Mar ; 41 () : 101934. [epub] 20250128

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39944466
Odkazy

PubMed 39944466
PubMed Central PMC11816217
DOI 10.1016/j.bbrep.2025.101934
PII: S2405-5808(25)00021-4
Knihovny.cz E-zdroje

Creatine is a nitrogen-containing carboxylic acid and a main component of phosphocreatine. In recent years, creatine is considered as a component of dietary nutrition, to improve the efficiency of physical activity and increase muscle mass of athletes and older people. Creatine has been shown to be able restore cardiac contractility impairment after myocardial infarction. However, as muscle cells do not synthesise creatine, the efficiency of creatine depends on its transmembrane transport. In our study, we evaluated the effect of «ProCreatine» (ProCr), a novel membrane transporter-independent creatine modification on fatigability of the rat gastrocnemius muscle and portal vein smooth muscle using fatigue stimulation pools. Mechanokinetic and biomechanical markers of fatigue in muscles to maintain the level of isometric tension induced by field electrical stimulation were examined. The results indicate that administration of ProCr to skeletal muscle significantly increases maximal force output, integrated muscle contractile force and significantly increases muscle productivity. We observed positive changes in all studied biochemical indices of fatigue. In addition, ProCr increases the duration of sustaining a constant level of isometric contraction in portal vein smooth muscle caused by electrical stimulation by 6 fold. Regular creatine in the same dose had no significant effect on these parameters neither in skeletal nor in smooth muscles. The data obtained suggest the possibility of using ProCr as a therapeutic agent capable of reducing and correcting pathological conditions of the muscular system that arise during the processes of fatigue in skeletal muscles and smooth muscles of hollow organs.

Zobrazit více v PubMed

Kostyukov A.I., Day S., Hellström F., et al. Fatigue-related changes in electomyogram activity of the cat gastrocnemius during frequency-modulated efferent stimulation. Neuroscience. 2000;97:801–809. doi: 10.1016/S0306-4522(00)00064-6. PubMed DOI

Cooke R. Modulation of the actomyosin interaction during fatigue of skeletal muscle. Muscle Nerve. 2007;36:756–777. doi: 10.1002/mus.20891. PubMed DOI

Enoka R., Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J. Physiol. 2008;586:11–23. doi: 10.1113/jphysiol.2007.139477. PubMed DOI PMC

Brosnan J.T., da Silva R.P., Brosnan M.E. The metabolic burden of creatine synthesis. Amino Acids. 2011;40:1325–1331. doi: 10.1007/s00726-011-0853-y. PubMed DOI

Gj C., Mf C., Wf K., Ke C. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am. J. Physiol. Endocrinol. Metabol. 2002;282 doi: 10.1152/ajpendo.2002.282.1.E67. PubMed DOI

Balestrino M. Role of creatine in the heart: health and disease. Nutrients. 2021;13:1215. doi: 10.3390/nu13041215. PubMed DOI PMC

Clarke H., Hickner R.C., Ormsbee M.J. The potential role of creatine in vascular health. Nutrients. 2021;13:857. doi: 10.3390/nu13030857. PubMed DOI PMC

Jäger R., Purpura M., Shao A., et al. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids. 2011;40:1369–1383. doi: 10.1007/s00726-011-0874-6. PubMed DOI PMC

Kreider R.B., Jäger R., Purpura M. Bioavailability, efficacy, safety, and regulatory status of creatine and related compounds: a critical review. Nutrients. 2022;14:1035. doi: 10.3390/nu14051035. PubMed DOI PMC

Gregor P., Nash S.R., Caron M.G., et al. Assignment of the creatine transporter gene (SLC6A8) to human chromosome Xq28 telomeric to G6PD. Genomics. 1995;25:332–333. doi: 10.1016/0888-7543(95)80155-F. PubMed DOI

Almilaji A., Sopjani M., Elvira B., et al. Upregulation of the creatine transporter Slc6A8 by klotho. Kidney Blood Press. Res. 2014;39:516–525. doi: 10.1159/000368462. PubMed DOI

Elgebaly S., Poston R., Todd R., et al. Cyclocreatine protects against ischemic injury and enhances cardiac recovery during early reperfusion. Expet Rev. Cardiovasc. Ther. 2019;17 doi: 10.1080/14779072.2019.1662722. PubMed DOI

Gufford B.T., Sriraghavan K., Miller N.J., et al. Physicochemical characterization of creatine N-methylguanidinium salts. J. Diet. Suppl. 2010;7(3):240–252. doi: 10.3109/19390211.2010.491507. PMID: 22432515. PubMed DOI

Nozdrenko D., Sm B., Ns N., et al. The influence of complex drug cocarnit on the nerve conduction velocity in nerve tibialis of rats with diabetic polyneuropathy. biomedicalresearch. 2018;29 doi: 10.4066/biomedicalresearch.29-18-1055. DOI

Nozdrenko D., Matvienko T., Vygovska O., et al. Protective effect of water-soluble C60 fullerene nanoparticles on the ischemia-reperfusion injury of the muscle soleus in rats. Int. J. Mol. Sci. 2021;22:6812. doi: 10.3390/ijms22136812. PubMed DOI PMC

Place N., Bruton J.D., Westerblad H. Mechanisms of fatigue induced by isometric contractions in exercising humans and in mouse isolated single muscle fibres. Clin. Exp. Pharmacol. Physiol. 2009;36:334–339. doi: 10.1111/j.1440-1681.2008.05021.x. PubMed DOI

Green H.J. Mechanisms of muscle fatigue in intense exercise. J. Sports Sci. 1997;15:247–256. doi: 10.1080/026404197367254. PubMed DOI

Wan J., Qin Z., Wang P., et al. Muscle fatigue: general understanding and treatment. Exp. Mol. Med. 2017;49:e384. doi: 10.1038/emm.2017.194. PubMed DOI PMC

Hargreaves M., Spriet L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020;2:817–828. doi: 10.1038/s42255-020-0251-4. PubMed DOI

Hawley J., Leckey J. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med. 2015;45 doi: 10.1007/s40279-015-0400-1. PubMed DOI PMC

Watt M., Heigenhauser G., Dyck D., Spriet L. Intramuscular triacyglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man. J. Physiol. 2002;541:969–978. doi: 10.1113/jphysiol.2002.018820. PubMed DOI PMC

Kemp G., Böning D., Beneke R., Maassen N. Explaining pH change in exercising muscle: lactic acid, proton consumption, and buffering vs. Strong ion difference. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;291:R235–R237. doi: 10.1152/ajpregu.00662.2005. PubMed DOI

Clausen T., Nielsen O.B. Potassium, Na + ,K + ‐pumps and fatigue in rat muscle. J. Physiol. 2007;584:295–304. doi: 10.1113/jphysiol.2007.136044. PubMed DOI PMC

Allen D.G., Lamb G.D., Westerblad H. Impaired calcium release during fatigue. J. Appl. Physiol. 2008;104:296–305. doi: 10.1152/japplphysiol.00908.2007. PubMed DOI

McKenna M.J., Bangsbo J., Renaud J.-M. Muscle K+, Na+, and Cl− disturbances and Na+-K+ pump inactivation: implications for fatigue. J. Appl. Physiol. 2008;104:288–295. doi: 10.1152/japplphysiol.01037.2007. PubMed DOI

Pagala M., Lehman D., Morgan M., et al. Physiological fatigue of smooth muscle contractions in rat urinary bladder. BJU Int. 2006;97:1087–1093. doi: 10.1111/j.1464-410X.2006.06136.x. PubMed DOI

Paul R.J. Functional compartmentalization of oxidative and glycolytic metabolism in vascular smooth muscle. Am. J. Physiol. Cell Physiol. 1983;244:C399–C409. doi: 10.1152/ajpcell.1983.244.5.C399. PubMed DOI

Shi J., Yang Y., Cheng A., et al. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol. Heart Circ. Physiol. 2020;319:H613–H631. doi: 10.1152/ajpheart.00220.2020. PubMed DOI

Clark J.F. The creatine kinase system in smooth muscle. Mol. Cell. Biochem. 1994;133:221–232. doi: 10.1007/BF01267956. PubMed DOI

Eijnde BO ’t, Ursø B., Richter E.A., et al. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes. 2001;50:18–23. doi: 10.2337/diabetes.50.1.18. PubMed DOI

Ko E.A., Han J., Jung I.D., Park W.S. Physiological roles of K+ channels in vascular smooth muscle cells. J. Smooth Muscle Res. 2008;44:65–81. doi: 10.1540/jsmr.44.65. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...