Mechanistic Insights into Solvent-Mediated Halide-Specific Irreversible Transformation of Cu-MOF with Iodide Detection Capability
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39945030
PubMed Central
PMC11863367
DOI
10.1021/acs.inorgchem.4c04816
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The fascinating feature of metal-organic frameworks is that they can respond to external stimuli, unlike other inorganic materials. This feature corresponds to the framework's flexibility, which originates with the long-range crystalline order of the framework accompanied by cooperative structural transformability. We have synthesized a novel metal-organic framework comprised of Cu(I) nodes with pyrazine linkers and benzene-1,3,5-tricarboxylate acting as template anions, named CUCAM-1 [Cu(Py)2(BTC)]n. In the presence of polar solvent systems, CUCAM-1 undergoes an irreversible structural transformation to yield a mixed phase that consists of HKUST-1 [Cu3(BTC)2(H2O)3]n and another CUCAM-2 [Cu(Py)(BTC)]n MOFs, whose novel structure is successfully revealed by continuous rotation electron diffraction from the mixture. In this structural transformation, a new ligand exchange occurs where template anions become ligands, confirmed by single crystal X-ray analysis. Further, structural transformation and the mechanism are explained by ab initio molecular dynamics (AIMD) simulations. Interestingly, different halides (F-, Cl-, and Br-) can be accompanied to affect/control the composition of the second phase by favoring the formation of the HKUST-1 phase over CUCAM-2, which was evident by the powder X-ray diffraction studies. Furthermore, the structural transformation induced by I- resulted in a colorimetric response due to the formation of a new MOF CUCAM-3, paving the way for use as an iodide detector.
Department of Materials and Environmental Chemistry Stockholm University SE 106 91 Stockholm Sweden
EaStCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST U K
See more in PubMed
Baumann A. E.; Burns D. A.; Liu B.; Thoi V. S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2 (1), 86.10.1038/s42004-019-0184-6. DOI
Wang M.; Dong R.; Feng X. Two-Dimensional Conjugated Metal-Organic Frameworks (2D -MOFs): Chemistry and Function for MOFtronics. Chem. Soc. Rev. 2021, 5 (4), 2764–2793. 10.1039/D0CS01160F. PubMed DOI
Mohideen M. I.; Lei C.; Tuek J. Í.; Malina O.; Brivio F.; Kasneryk V.; Huang Z.; Mazur M.; Zou X.; Nachtigall P.; Ejka J. Í.; Morris R. E. Magneto-Structural Correlations of Novel Kagomé-Type Metal Organic Frameworks. J. Mater. Chem. C: Mater. Opt. Electron. Dev. 2019, 7 (22), 6692–6697. 10.1039/C9TC01053J. DOI
El Mkami H.; Mohideen M. I. H.; Pal C.; McKinlay A.; Scheimann O.; Morris R. E. EPR and Magnetic Studies of a Novel Copper Metal Organic Framework (STAM-I). Chem. Phys. Lett. 2012, 544, 17–21. 10.1016/j.cplett.2012.06.012. DOI
Furukawa H.; Cordova K. E.; O’Keeffe M.; Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science (1979) 2013, 341 (6149), 123044410.1126/science.1230444. PubMed DOI
Kumar P.; Pournara A.; Kim K.-H.; Bansal V.; Rapti S.; Manos M. J. Metal-Organic Frameworks: Challenges and Opportunities for Ion-Exchange/Sorption Applications. Prog. Mater. Sci. 2017, 86, 25–74. 10.1016/j.pmatsci.2017.01.002. DOI
Mohideen M. I. H.; Belmabkhout Y.; Bhatt P. M.; Shkurenko A.; Chen Z.; Adil K.; Eddaoudi M. Upgrading Gasoline to High Octane Numbers Using a Zeolite-like Metal-Organic Framework Molecular Sieve with Ana-Topology. Chem. Commun. (Camb) 2018, 54 (68), 9414–9417. 10.1039/C8CC04824J. PubMed DOI
He Y.; Zhou W.; Qian G.; Chen B. Methane Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43 (16), 5657–5678. 10.1039/C4CS00032C. PubMed DOI
Mohideen M. I. H.; Pillai R. S.; Adil K.; Bhatt P. M.; Belmabkhout Y.; Shkurenko A.; Maurin G.; Eddaoudi M. A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. Chem. 2017, 3 (5), 822–833. 10.1016/j.chempr.2017.09.002. DOI
Hanikel N.; Prévot M. S.; Yaghi O. M. MOF Water Harvesters. Nat. Nanotechnol 2020, 15 (5), 348–355. 10.1038/s41565-020-0673-x. PubMed DOI
Opanasenko M.; Dhakshinamoorthy A.; Hwang Y. K.; Chang J.; Garcia H.; Čejka J. Superior Performance of Metal–Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem 2013, 6 (5), 865–871. 10.1002/cssc.201300032. PubMed DOI
Ding M.; Flaig R. W.; Jiang H.-L.; Yaghi O. M. Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev. 2019, 48 (1), 2783–2828. 10.1039/C8CS00829A. PubMed DOI
Schneemann A.; Bon V.; Schwedler I.; Senkovska I.; Kaskel S.; Fischer R. A. Flexible Metal–Organic Frameworks. Chem. Soc. Rev. 2014, 43 (16), 6062–6096. 10.1039/C4CS00101J. PubMed DOI
Lee J. H.; Jeoung S.; Chung Y. G.; Moon H. R. Elucidation of Flexible Metal-Organic Frameworks: Research Progresses and Recent Developments. Coord. Chem. Rev. 2019, 389, 161–188. 10.1016/j.ccr.2019.03.008. DOI
Burrows A. D.; Kelly D. J.; Haja Mohideen M. I.; Mahon M. F.; Pop V. M.; Richardson C. Competition between Coordination and Hydrogen Bonding in Networks Constructed Using Dipyridyl-1H-Pyrazole Ligands. CrystEngComm 2011, 13 (5), 1676–1682. 10.1039/C0CE00310G. DOI
Mohideen M. I. H.; Xiao B.; Wheatley P. S.; McKinlay A. C.; Li Y.; Slawin A. M. Z.; Aldous D. W.; Cessford N. F.; Düren T.; Zhao X.; Gill R.; Thomas K. M.; Griffin J. M.; Ashbrook S. E.; Morris R. E. Protecting Group and Switchable Pore-Discriminating Adsorption Properties of a Hydrophilic-Hydrophobic Metal-Organic Framework. Nat. Chem. 2011, 3 (4), 304–310. 10.1038/nchem.1003. PubMed DOI
Férey G.; Serre C. Large Breathing Effects in Three-Dimensional Porous Hybrid Matter: Facts, Analyses, Rules and Consequences. Chem. Soc. Rev. 2009, 38 (5), 1380.10.1039/b804302g. PubMed DOI
Li J.; Huang P.; Wu X.-R.; Tao J.; Huang R.-B.; Zheng L.-S. Metal-Organic Frameworks Displaying Single Crystal-to-Single Crystal Transformation through Postsynthetic Uptake of Metal Clusters. Chem. Sci. 2013, 4 (8), 3232.10.1039/c3sc51379c. DOI
Wang H.; Meng W.; Wu J.; Ding J.; Hou H.; Fan Y. Crystalline Central-Metal Transformation in Metal-Organic Frameworks. Coord. Chem. Rev. 2016, 307, 130–146. 10.1016/j.ccr.2015.05.009. DOI
Lalonde M.; Bury W.; Karagiaridi O.; Brown Z.; Hupp J. T.; Farha O. K. Transmetalation: Routes to Metal Exchange within Metal–Organic Frameworks. J. Mater. Chem. A Mater. 2013, 1 (18), 5453.10.1039/c3ta10784a. DOI
Burnett B. J.; Barron P. M.; Hu C.; Choe W. Stepwise Synthesis of Metal–Organic Frameworks: Replacement of Structural Organic Linkers. J. Am. Chem. Soc. 2011, 133 (26), 9984–9987. 10.1021/ja201911v. PubMed DOI
Kaeosamut N.; Chimupala Y.; Yanu P.; Wannapaiboon S.; Sammawipawekul N.; Tonkaew S.; Jakmunee J.; Yimklan S. Ligand-Substitution-Induced Single-Crystal to Single-Crystal Transformations in a Redox-Versatile Cu(II) MOF toward Smartphone-Based Colorimetric Detection of Iodide. Inorg. Chem. 2022, 61 (48), 19612–19623. 10.1021/acs.inorgchem.2c03579. PubMed DOI
Chimupala Y.; Kaeosamut N.; Yimklan S. Octahedral to Tetrahedral Conversion upon a Ligand-Substitution-Induced Single-Crystal to Single-Crystal Transformation in a Rectangular Zn(II) Metal–Organic Framework and Its Photocatalysis. Cryst. Growth Des 2021, 21 (9), 5373–5382. 10.1021/acs.cgd.1c00658. DOI
Kaeosamut N.; Chimupala Y.; Yimklan S. Anion-Controlled Synthesis of Enantiomeric Twofold Interpenetrated 3D Zinc(II) Coordination Polymer with Ligand Substitution-Induced Single-Crystal-to-Single-Crystal Transformation and Photocatalysis. Cryst. Growth Des 2021, 21 (5), 2942–2953. 10.1021/acs.cgd.1c00103. DOI
Rani D.; Bhasin K. K.; Singh M. Non-Porous Interpenetrating Co-Bpe MOF for Colorimetric Iodide Sensing. Dalton Transactions 2021, 50 (38), 13430–13437. 10.1039/D1DT01757H. PubMed DOI
Chen Y.-Q.; Li G.-R.; Chang Z.; Qu Y.-K.; Zhang Y.-H.; Bu X.-H. A Cu(i) Metal–Organic Framework with 4-Fold Helical Channels for Sensing Anions. Chem. Sci. 2013, 4 (9), 3678.10.1039/c3sc00057e. DOI
Ding Y.-J.; Li T.; Hong X.-J.; Zhu L.-C.; Cai Y.-P.; Zhu S.-M.; Yu S.-J. Construction of Four 3d–4f Heterometallic Pillar-Layered Frameworks Containing Left- and Right-Handed Helical Chains and a I – Chemosensor. CrystEngComm 2015, 17 (21), 3945–3952. 10.1039/C5CE00324E. DOI
Shi P.-F.; Hu H.-C.; Zhang Z.-Y.; Xiong G.; Zhao B. Heterometal–Organic Frameworks as Highly Sensitive and Highly Selective Luminescent Probes to Detect I – Ions in Aqueous Solutions. Chem. Commun. 2015, 51 (19), 3985–3988. 10.1039/C4CC09081K. PubMed DOI
Qu G.; Han Y.; Qi J.; Xing X.; Hou M.; Sun Y.; Wang X.; Sun G. Rapid Iodine Capture from Radioactive Wastewater by Green and Low-Cost Biomass Waste Derived Porous Silicon–Carbon Composite. RSC Adv. 2021, 11 (9), 5268–5275. 10.1039/D0RA09723C. PubMed DOI PMC
Sheldrick G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found Adv. 2015, 71 (1), 3–8. 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct Chem. 2015, 71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Spek A. L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr. C Struct Chem. 2015, 71 (1), 9–18. 10.1107/S2053229614024929. PubMed DOI
Spek A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65 (2), 148–155. 10.1107/S090744490804362X. PubMed DOI PMC
Hutter J.; Iannuzzi M.; Schiffmann F.; VandeVondele J. cp2k: Atomistic Simulations of Condensed Matter Systems. WIREs Comput. Mol. Sci. 2014, 4 (1), 15–25. 10.1002/wcms.1159. DOI
VandeVondele J.; Krack M.; Mohamed F.; Parrinello M.; Chassaing T.; Hutter J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005, 167 (2), 103–128. 10.1016/j.cpc.2004.12.014. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI
VandeVondele J.; Hutter J. Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases. J. Chem. Phys. 2007, 127 (11), 114105.10.1063/1.2770708. PubMed DOI
Hartwigsen C.; Goedecker S.; Hutter J. Relativistic Separable Dual-Space Gaussian Pseudopotentials from H to Rn. Phys. Rev. B 1998, 58 (7), 3641–3662. 10.1103/PhysRevB.58.3641. PubMed DOI
Goedecker S.; Teter M.; Hutter J. Separable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B 1996, 54 (3), 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI
Guo H.-X.; Weng W.; Li X.-Z.; Liang M.; Zheng C.-Q. A Novel Three-Dimensional Coordination Polymer Constructed from Pyrazine and Copper(I): Poly[[Copper(I)-Di-μ 2 -Pyrazine-κ 4N: N ′] 3,5-Dicarboxybenzenesulfonate Monohydrate]. Acta Crystallogr. C 2008, 64 (9), m314–m316. 10.1107/S0108270108025900. PubMed DOI
Ge M.; Wang Y.; Carraro F.; Liang W.; Roostaeinia M.; Siahrostami S.; Proserpio D. M.; Doonan C.; Falcaro P.; Zheng H.; Zou X.; Huang Z. High-Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angew. Chem. 2021, 133 (20), 11492–11498. 10.1002/ange.202016882. PubMed DOI PMC
Gao C.; Liu S.; Xie L.; Sun C.; Cao J.; Ren Y.; Feng D.; Su Z. Rational Design Microporous Pillared-Layer Frameworks: Syntheses. Structures and Gas Sorption Properties. CrystEngComm 2009, 11 (1), 177–182. 10.1039/B812097H. DOI
Jeong S.; Kim D.; Shin S.; Moon D.; Cho S. J.; Lah M. S. Combinational Synthetic Approaches for Isoreticular and Polymorphic Metal–Organic Frameworks with Tuned Pore Geometries and Surface Properties. Chem. Mater. 2014, 26 (4), 1711–1719. 10.1021/cm404239s. DOI
Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F.; Golze D.; Wilhelm J.; Chulkov S.; Bani-Hashemian M. H.; Weber V.; Borštnik U.; Taillefumier M.; Jakobovits A. S.; Lazzaro A.; Pabst H.; Müller T.; Schade R.; Guidon M.; Andermatt S.; Holmberg N.; Schenter G. K.; Hehn A.; Bussy A.; Belleflamme F.; Tabacchi G.; Glöß A.; Lass M.; Bethune I.; Mundy C. J.; Plessl C.; Watkins M.; VandeVondele J.; Krack M.; Hutter J. CP2K: An Electronic Structure and Molecular Dynamics Software Package—Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020, 152 (19), 194103.10.1063/5.0007045. PubMed DOI
Majano G.; Martin O.; Hammes M.; Smeets S.; Baerlocher C.; Pérez-Ramírez J. Solvent-Mediated Reconstruction of the Metal–Organic Framework HKUST-1 (Cu3(BTC)2). Adv. Funct Mater. 2014, 24 (25), 3855–3865. 10.1002/adfm.201303678. DOI