• This record comes from PubMed

Mechanistic Insights into Solvent-Mediated Halide-Specific Irreversible Transformation of Cu-MOF with Iodide Detection Capability

. 2025 Feb 24 ; 64 (7) : 3326-3334. [epub] 20250213

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

The fascinating feature of metal-organic frameworks is that they can respond to external stimuli, unlike other inorganic materials. This feature corresponds to the framework's flexibility, which originates with the long-range crystalline order of the framework accompanied by cooperative structural transformability. We have synthesized a novel metal-organic framework comprised of Cu(I) nodes with pyrazine linkers and benzene-1,3,5-tricarboxylate acting as template anions, named CUCAM-1 [Cu(Py)2(BTC)]n. In the presence of polar solvent systems, CUCAM-1 undergoes an irreversible structural transformation to yield a mixed phase that consists of HKUST-1 [Cu3(BTC)2(H2O)3]n and another CUCAM-2 [Cu(Py)(BTC)]n MOFs, whose novel structure is successfully revealed by continuous rotation electron diffraction from the mixture. In this structural transformation, a new ligand exchange occurs where template anions become ligands, confirmed by single crystal X-ray analysis. Further, structural transformation and the mechanism are explained by ab initio molecular dynamics (AIMD) simulations. Interestingly, different halides (F-, Cl-, and Br-) can be accompanied to affect/control the composition of the second phase by favoring the formation of the HKUST-1 phase over CUCAM-2, which was evident by the powder X-ray diffraction studies. Furthermore, the structural transformation induced by I- resulted in a colorimetric response due to the formation of a new MOF CUCAM-3, paving the way for use as an iodide detector.

See more in PubMed

Baumann A. E.; Burns D. A.; Liu B.; Thoi V. S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2 (1), 86.10.1038/s42004-019-0184-6. DOI

Wang M.; Dong R.; Feng X. Two-Dimensional Conjugated Metal-Organic Frameworks (2D -MOFs): Chemistry and Function for MOFtronics. Chem. Soc. Rev. 2021, 5 (4), 2764–2793. 10.1039/D0CS01160F. PubMed DOI

Mohideen M. I.; Lei C.; Tuek J. Í.; Malina O.; Brivio F.; Kasneryk V.; Huang Z.; Mazur M.; Zou X.; Nachtigall P.; Ejka J. Í.; Morris R. E. Magneto-Structural Correlations of Novel Kagomé-Type Metal Organic Frameworks. J. Mater. Chem. C: Mater. Opt. Electron. Dev. 2019, 7 (22), 6692–6697. 10.1039/C9TC01053J. DOI

El Mkami H.; Mohideen M. I. H.; Pal C.; McKinlay A.; Scheimann O.; Morris R. E. EPR and Magnetic Studies of a Novel Copper Metal Organic Framework (STAM-I). Chem. Phys. Lett. 2012, 544, 17–21. 10.1016/j.cplett.2012.06.012. DOI

Furukawa H.; Cordova K. E.; O’Keeffe M.; Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science (1979) 2013, 341 (6149), 123044410.1126/science.1230444. PubMed DOI

Kumar P.; Pournara A.; Kim K.-H.; Bansal V.; Rapti S.; Manos M. J. Metal-Organic Frameworks: Challenges and Opportunities for Ion-Exchange/Sorption Applications. Prog. Mater. Sci. 2017, 86, 25–74. 10.1016/j.pmatsci.2017.01.002. DOI

Mohideen M. I. H.; Belmabkhout Y.; Bhatt P. M.; Shkurenko A.; Chen Z.; Adil K.; Eddaoudi M. Upgrading Gasoline to High Octane Numbers Using a Zeolite-like Metal-Organic Framework Molecular Sieve with Ana-Topology. Chem. Commun. (Camb) 2018, 54 (68), 9414–9417. 10.1039/C8CC04824J. PubMed DOI

He Y.; Zhou W.; Qian G.; Chen B. Methane Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43 (16), 5657–5678. 10.1039/C4CS00032C. PubMed DOI

Mohideen M. I. H.; Pillai R. S.; Adil K.; Bhatt P. M.; Belmabkhout Y.; Shkurenko A.; Maurin G.; Eddaoudi M. A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. Chem. 2017, 3 (5), 822–833. 10.1016/j.chempr.2017.09.002. DOI

Hanikel N.; Prévot M. S.; Yaghi O. M. MOF Water Harvesters. Nat. Nanotechnol 2020, 15 (5), 348–355. 10.1038/s41565-020-0673-x. PubMed DOI

Opanasenko M.; Dhakshinamoorthy A.; Hwang Y. K.; Chang J.; Garcia H.; Čejka J. Superior Performance of Metal–Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem 2013, 6 (5), 865–871. 10.1002/cssc.201300032. PubMed DOI

Ding M.; Flaig R. W.; Jiang H.-L.; Yaghi O. M. Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev. 2019, 48 (1), 2783–2828. 10.1039/C8CS00829A. PubMed DOI

Schneemann A.; Bon V.; Schwedler I.; Senkovska I.; Kaskel S.; Fischer R. A. Flexible Metal–Organic Frameworks. Chem. Soc. Rev. 2014, 43 (16), 6062–6096. 10.1039/C4CS00101J. PubMed DOI

Lee J. H.; Jeoung S.; Chung Y. G.; Moon H. R. Elucidation of Flexible Metal-Organic Frameworks: Research Progresses and Recent Developments. Coord. Chem. Rev. 2019, 389, 161–188. 10.1016/j.ccr.2019.03.008. DOI

Burrows A. D.; Kelly D. J.; Haja Mohideen M. I.; Mahon M. F.; Pop V. M.; Richardson C. Competition between Coordination and Hydrogen Bonding in Networks Constructed Using Dipyridyl-1H-Pyrazole Ligands. CrystEngComm 2011, 13 (5), 1676–1682. 10.1039/C0CE00310G. DOI

Mohideen M. I. H.; Xiao B.; Wheatley P. S.; McKinlay A. C.; Li Y.; Slawin A. M. Z.; Aldous D. W.; Cessford N. F.; Düren T.; Zhao X.; Gill R.; Thomas K. M.; Griffin J. M.; Ashbrook S. E.; Morris R. E. Protecting Group and Switchable Pore-Discriminating Adsorption Properties of a Hydrophilic-Hydrophobic Metal-Organic Framework. Nat. Chem. 2011, 3 (4), 304–310. 10.1038/nchem.1003. PubMed DOI

Férey G.; Serre C. Large Breathing Effects in Three-Dimensional Porous Hybrid Matter: Facts, Analyses, Rules and Consequences. Chem. Soc. Rev. 2009, 38 (5), 1380.10.1039/b804302g. PubMed DOI

Li J.; Huang P.; Wu X.-R.; Tao J.; Huang R.-B.; Zheng L.-S. Metal-Organic Frameworks Displaying Single Crystal-to-Single Crystal Transformation through Postsynthetic Uptake of Metal Clusters. Chem. Sci. 2013, 4 (8), 3232.10.1039/c3sc51379c. DOI

Wang H.; Meng W.; Wu J.; Ding J.; Hou H.; Fan Y. Crystalline Central-Metal Transformation in Metal-Organic Frameworks. Coord. Chem. Rev. 2016, 307, 130–146. 10.1016/j.ccr.2015.05.009. DOI

Lalonde M.; Bury W.; Karagiaridi O.; Brown Z.; Hupp J. T.; Farha O. K. Transmetalation: Routes to Metal Exchange within Metal–Organic Frameworks. J. Mater. Chem. A Mater. 2013, 1 (18), 5453.10.1039/c3ta10784a. DOI

Burnett B. J.; Barron P. M.; Hu C.; Choe W. Stepwise Synthesis of Metal–Organic Frameworks: Replacement of Structural Organic Linkers. J. Am. Chem. Soc. 2011, 133 (26), 9984–9987. 10.1021/ja201911v. PubMed DOI

Kaeosamut N.; Chimupala Y.; Yanu P.; Wannapaiboon S.; Sammawipawekul N.; Tonkaew S.; Jakmunee J.; Yimklan S. Ligand-Substitution-Induced Single-Crystal to Single-Crystal Transformations in a Redox-Versatile Cu(II) MOF toward Smartphone-Based Colorimetric Detection of Iodide. Inorg. Chem. 2022, 61 (48), 19612–19623. 10.1021/acs.inorgchem.2c03579. PubMed DOI

Chimupala Y.; Kaeosamut N.; Yimklan S. Octahedral to Tetrahedral Conversion upon a Ligand-Substitution-Induced Single-Crystal to Single-Crystal Transformation in a Rectangular Zn(II) Metal–Organic Framework and Its Photocatalysis. Cryst. Growth Des 2021, 21 (9), 5373–5382. 10.1021/acs.cgd.1c00658. DOI

Kaeosamut N.; Chimupala Y.; Yimklan S. Anion-Controlled Synthesis of Enantiomeric Twofold Interpenetrated 3D Zinc(II) Coordination Polymer with Ligand Substitution-Induced Single-Crystal-to-Single-Crystal Transformation and Photocatalysis. Cryst. Growth Des 2021, 21 (5), 2942–2953. 10.1021/acs.cgd.1c00103. DOI

Rani D.; Bhasin K. K.; Singh M. Non-Porous Interpenetrating Co-Bpe MOF for Colorimetric Iodide Sensing. Dalton Transactions 2021, 50 (38), 13430–13437. 10.1039/D1DT01757H. PubMed DOI

Chen Y.-Q.; Li G.-R.; Chang Z.; Qu Y.-K.; Zhang Y.-H.; Bu X.-H. A Cu(i) Metal–Organic Framework with 4-Fold Helical Channels for Sensing Anions. Chem. Sci. 2013, 4 (9), 3678.10.1039/c3sc00057e. DOI

Ding Y.-J.; Li T.; Hong X.-J.; Zhu L.-C.; Cai Y.-P.; Zhu S.-M.; Yu S.-J. Construction of Four 3d–4f Heterometallic Pillar-Layered Frameworks Containing Left- and Right-Handed Helical Chains and a I – Chemosensor. CrystEngComm 2015, 17 (21), 3945–3952. 10.1039/C5CE00324E. DOI

Shi P.-F.; Hu H.-C.; Zhang Z.-Y.; Xiong G.; Zhao B. Heterometal–Organic Frameworks as Highly Sensitive and Highly Selective Luminescent Probes to Detect I – Ions in Aqueous Solutions. Chem. Commun. 2015, 51 (19), 3985–3988. 10.1039/C4CC09081K. PubMed DOI

Qu G.; Han Y.; Qi J.; Xing X.; Hou M.; Sun Y.; Wang X.; Sun G. Rapid Iodine Capture from Radioactive Wastewater by Green and Low-Cost Biomass Waste Derived Porous Silicon–Carbon Composite. RSC Adv. 2021, 11 (9), 5268–5275. 10.1039/D0RA09723C. PubMed DOI PMC

Sheldrick G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found Adv. 2015, 71 (1), 3–8. 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct Chem. 2015, 71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Spek A. L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr. C Struct Chem. 2015, 71 (1), 9–18. 10.1107/S2053229614024929. PubMed DOI

Spek A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65 (2), 148–155. 10.1107/S090744490804362X. PubMed DOI PMC

Hutter J.; Iannuzzi M.; Schiffmann F.; VandeVondele J. cp2k: Atomistic Simulations of Condensed Matter Systems. WIREs Comput. Mol. Sci. 2014, 4 (1), 15–25. 10.1002/wcms.1159. DOI

VandeVondele J.; Krack M.; Mohamed F.; Parrinello M.; Chassaing T.; Hutter J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005, 167 (2), 103–128. 10.1016/j.cpc.2004.12.014. DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI

VandeVondele J.; Hutter J. Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases. J. Chem. Phys. 2007, 127 (11), 114105.10.1063/1.2770708. PubMed DOI

Hartwigsen C.; Goedecker S.; Hutter J. Relativistic Separable Dual-Space Gaussian Pseudopotentials from H to Rn. Phys. Rev. B 1998, 58 (7), 3641–3662. 10.1103/PhysRevB.58.3641. PubMed DOI

Goedecker S.; Teter M.; Hutter J. Separable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B 1996, 54 (3), 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI

Guo H.-X.; Weng W.; Li X.-Z.; Liang M.; Zheng C.-Q. A Novel Three-Dimensional Coordination Polymer Constructed from Pyrazine and Copper(I): Poly[[Copper(I)-Di-μ 2 -Pyrazine-κ 4N: N ′] 3,5-Dicarboxybenzenesulfonate Monohydrate]. Acta Crystallogr. C 2008, 64 (9), m314–m316. 10.1107/S0108270108025900. PubMed DOI

Ge M.; Wang Y.; Carraro F.; Liang W.; Roostaeinia M.; Siahrostami S.; Proserpio D. M.; Doonan C.; Falcaro P.; Zheng H.; Zou X.; Huang Z. High-Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angew. Chem. 2021, 133 (20), 11492–11498. 10.1002/ange.202016882. PubMed DOI PMC

Gao C.; Liu S.; Xie L.; Sun C.; Cao J.; Ren Y.; Feng D.; Su Z. Rational Design Microporous Pillared-Layer Frameworks: Syntheses. Structures and Gas Sorption Properties. CrystEngComm 2009, 11 (1), 177–182. 10.1039/B812097H. DOI

Jeong S.; Kim D.; Shin S.; Moon D.; Cho S. J.; Lah M. S. Combinational Synthetic Approaches for Isoreticular and Polymorphic Metal–Organic Frameworks with Tuned Pore Geometries and Surface Properties. Chem. Mater. 2014, 26 (4), 1711–1719. 10.1021/cm404239s. DOI

Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F.; Golze D.; Wilhelm J.; Chulkov S.; Bani-Hashemian M. H.; Weber V.; Borštnik U.; Taillefumier M.; Jakobovits A. S.; Lazzaro A.; Pabst H.; Müller T.; Schade R.; Guidon M.; Andermatt S.; Holmberg N.; Schenter G. K.; Hehn A.; Bussy A.; Belleflamme F.; Tabacchi G.; Glöß A.; Lass M.; Bethune I.; Mundy C. J.; Plessl C.; Watkins M.; VandeVondele J.; Krack M.; Hutter J. CP2K: An Electronic Structure and Molecular Dynamics Software Package—Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020, 152 (19), 194103.10.1063/5.0007045. PubMed DOI

Majano G.; Martin O.; Hammes M.; Smeets S.; Baerlocher C.; Pérez-Ramírez J. Solvent-Mediated Reconstruction of the Metal–Organic Framework HKUST-1 (Cu3(BTC)2). Adv. Funct Mater. 2014, 24 (25), 3855–3865. 10.1002/adfm.201303678. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...