• This record comes from PubMed

Adoption of drone, sensor, and robotic technologies in organic farming systems of Visegrad countries

. 2025 Jan 15 ; 11 (1) : e41408. [epub] 20241220

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Links

PubMed 39958722
PubMed Central PMC11825311
DOI 10.1016/j.heliyon.2024.e41408
PII: S2405-8440(24)17439-7
Knihovny.cz E-resources

The integration of Precision Agriculture (PA) technologies into organic farming offers substantial potential for enhancing efficiency and sustainability, yet adoption rates vary significantly across countries. This study presents a model for assessing PA adoption in organic farming within the Visegrad Group countries: Czech Republic, Hungary, Poland, and Slovakia using a survey-based approach. Key technologies examined include drones, sensors, and robots used in organic crop and livestock production. Findings indicate that the Czech Republic leads in drone usage for soil monitoring (70 %), Hungary excels in soil moisture sensors (55 %), Slovakia prioritizes drones for fertilizer application (75 %), and Poland shows significant use of robots for harvesting and seed planting (33 %). This model effectively highlights cross-country differences in PA technology adoption and associated environmental outcomes, addressing a gap in understanding PA use in organic farming in Visegrad group countries. The results of the study provide actionable insights for improving the adoption of Precision Agriculture technologies in organic farming across the selected countries. The findings offer valuable insights for policymakers and stakeholders promoting sustainable agricultural innovation. Limitations include reliance on survey data, which may impact broader applicability, and a geographic focus on the Visegrad region, suggesting the need for future studies in other areas.

See more in PubMed

Karunathilake E.M.B.M., Le A.T., Heo S., Chung Y.S., Mansoor S. The path to smart farming: innovations and opportunities in precision agriculture. Agriculture. 2023;13(8):1593. doi: 10.3390/agriculture13081593. DOI

Mostafa E.E. Precision agriculture using artificial intelligence and robotics. Journal of Agriculture and Food Research. 2024;1(2):35–52. doi: 10.5455/JRAFS.20240404014009. DOI

Lowenberg D.J., Erickson B. Setting the record straight on precision agriculture adoption. Agronomy. 2019;111:1552–1569. doi: 10.2134/agronj2018.12.0779. DOI

Marcin M. Book: Three Decades of Transformation in the East-Central European Countryside. 2019. Specificity and challenges of agriculture within central-east Europe peripheries. Case study of the visegrad countries area. DOI

Sadowski A., Genstwa-Namysł N., Zmyślona J., Smutka L. Environmental efficiency of agriculture in Visegrád group countries vs. the EU and the world. Agriculture. 2024 doi: 10.3390/agriculture14112073. DOI

Vrchota J., Pech M., Švepešová I. Precision agriculture technologies for crop and livestock production in the Czech Republic. Agriculture. 2022 doi: 10.3390/agriculture12081080. DOI

Némethová J., Rybanský L. Development trends in the crop production in Slovakia after accession to the European union—case study, Slovakia. Sustainability. 2021;13(15):8512. doi: 10.3390/su13158512. DOI

Čechura L., Kroupová Z.Z., Kostlivý V., Lekešová M. Productivity and efficiency of precision farming: the case of Czech cereal production. AGRIS on-line Papers in Economics and Informatics. 2021;13(3):15–24. doi: 10.7160/aol.2021.130302. ISSN 1804-1930. DOI

Balogh P., Bai A., Czibere I., Fodor I. Kovách L., Bujdos A., Sulyok D., Gabnai Z., Birkner Z. Economic and social barriers of precision farming in Hungary. Agronomy. 2021;11:1112. doi: 10.3390/agronomy11061112. DOI

Czibere I., Kovách I., Loncsák N. Hungarian farmers and the adoption of precision farming. Eur. Countrys. 2023;15(3):366–380. doi: 10.2478/euco-2023-002. DOI

Fróna D. The state of agricultural digitalisation in Hungary. Res. Agr. Eng. 2024;70:1–12.

Yarashynskaya A., Prus P. Precision agriculture implementation factors and adoption potential: the case study of polish agriculture. Agronomy. 2022;12(9):2226. doi: 10.3390/agronomy1209222657. DOI

Pavlenko T., Pichon L., Escolà A., Griepentrog H.W., Marinello F., M Casasnovas J.A., Masià J., Milics G., Paraforos D.S., Matečný I., A Taylor J., Tisseyre B. 14th European Conference on Precision Agriculture. 2023. Adoption of precision agriculture across Europe: a case study on remote sensing; pp. 805–812. Jul 2023, Bologna, Italy.

Chrastinová Z., Krížová S., Zbranek P. Comparison of production performance of agriculture in EU countries. Agric. Econ. 2017;17:53–76. https://www.cabidigitallibrary.org/doi/full/10.5555/20183058384 DOI

Han G., Schuck N.G. Motivations and challenges for adoption of organic grain production: a qualitative study of Iowa organic farmers. Foods. 2022;11(21):3512. doi: 10.3390/foods11213512. PMID: 36360125; PMCID: PMC9658542. PubMed DOI PMC

Sapbamrer R., Thammachai A. A systematic review of factors influencing farmers' adoption of organic farming. Sustainability. 2021 doi: 10.3390/su1307384. DOI

T. Christian, N.M. S Ramsey, T. Griffin, 2016. Factors Influencing the Adoption of Precision Agricultural Technologies by Kansas Farmers. Kansas State Uni. Department of Agricultural Economics KSU-AgEcon-CT-NM-SR-TG-2016.1 https://www.agmanager.info/sites/default/files/pdf/Precision%20Ag%20Technology%20Adoption.pdf.

Muller A., Schader C., El-Hage S.N., Brüggemann J., Isensee A., Erb K.H., Smith P., Klocke P., Leiber F., Stolze M., Niggli U. Strategies for feeding the world more sustainably with organic agriculture. Nature Comm. 2019 doi: 10.1038/s41467-017-01410-. PubMed DOI PMC

Saffeullah P., Nabi N., Liaqat S., Anjum N.A., Siddiqi T.O., Umar S. Microbiota and Biofertilizers. Springer; Cham: 2021. Organic agriculture: principles, current status, and significance. DOI

Paull J. The Uptake of Organic Agriculture: a decade of worldwide development. J of Social and Development Sci. 2011 doi: 10.22610/jsds.v2i3.660. DOI

https://www.eea.europa.eu/data-and-maps/figures/shares-of-the-utilised-agricultural-1.

https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=419176.

Antczak E. Analyzing spatiotemporal development of organic farming in Poland. Sustain. Times J. 2021;13 doi: 10.3390/su131810399. 2021. DOI

Kušová D., Tesitel J., Boukalova Z. Willingness to adopt technologies of precision agriculture: a Case Study of the Czech Republic. Conference: WIT Press, Water Resources Management. 2017 doi: 10.2495/WRM170111. DOI

Reganold J., Wachter J. Organic agriculture in the twenty-first century. Nat. Plants. 2016 doi: 10.1038/nplants.2015.221. PubMed DOI

Debuschewitz E., Sanders J. Environmental impacts of organic agriculture and the controversial scientific debates. Organic Agricuture. 2022;12:1–15. doi: 10.1007/s13165-021-00381-z. DOI

European Comision. Organic farming in the EU: a decade of growth 2023 https://agriculture.ec.europa.eu/news/organic-farming-eu-decade-growth-2023-01-18_en.

Trávníček J., Willer H., Schaack D. FiBL & IFOAM – Organics International. The World of Organic Agriculture; 2021. Organic Farming and Market Development in Europe and the European Union.

Kowalska A.S., Paskudzka K. 35th IBIMA Conference: 1-2 April 2020, Seville, Spain. 2020. Development of organic farming in the Visegrad group countries after accession to the European Union – comparative Analysis.

European Commission - Organic Farming in the Czech Republic: https://agriculture.ec.europa.eu/farming/organic-farming_en.

IFOAM - Organics Internationаn https://www.ifoam.bio/.

Eurostat - Organic Farming Statistics https://ec.europa.eu/eurostat/web/agriculture/data/database.

FiBL: Organic Europe https://www.fibl.org/en/.

Zhang Q. CRC Press, Inc.Subs. of Times Mirror; United States, Book: 2015. Precision Agriculture Technology for Crop Farming; p. 374. SBN:978-1-4822-5107-4.

Duncan E., Glaros A., Ross D.Z., Nost E. New but for whom? Discourses of innovation in precision agriculture. Agric. Hum. Val. 2021;38:1181–1199. doi: 10.1007/s10460-021-10244-8. PubMed DOI PMC

Schönfeld M.V., Reinhard H., Laura B. Big data on a farm smart farming. Springer Briefs in Law. 2018:109–120. doi: 10.1007/978-3-319-62461-7_12. DOI

Petrovic B., Tunguz V., Bartos P. Application of computer vision in livestock and crop production A review. Computing and Artificial Intelligence. 2023;1(1):360. doi: 10.59400/cai.v1i1.360. DOI

Alfred R., Obit J.H., Chin C.P.Y., Haviluddin H., Lim Y Y. Towards paddy rice smart farming: a Review on big data, machine learning, and rice production tasks. IEEE Access. 2021;9:50358–50380. doi: 10.1109/ACCESS.2021.3069449. DOI

McFadden J., Njuki E., Griffin T. US Department of Agriculture, Economic Research Service; 2023. Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms.https://www.ers.usda.gov

Monteiro A., Santos S., Gonçalves P. Precision agriculture for crop and livestock farming. Brief Review. Animals. 2021 doi: 10.3390/ani11082345. PubMed DOI PMC

Lee C.L., Strong R., Dooley K.E. Analyzing precision agriculture adoption across the globe: a Systematic Review of Scholarship from 1999–2020. Sustain. Times. 2021;13 doi: 10.3390/su131810295. DOI

Knierim M.A., Wurbs A., Kraus T., Borges F. Experience versus expectation: farmers' perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 2020;21:34–50. doi: 10.1007/s11119-019-09651-z. DOI

Dobri M.D. Agricultural University- Plovdiv Faculty of Economics; 2020. Evaluation of Innovation Technologies in Precision Agriculture. Ph.D Dissertation.

Giannakis E., Bruggeman A. The highly variable economic performance of European agriculture. Land Use Pol. 2015;(45):26–35. doi: 10.1016/j.landusepol.2014.12.009. DOI

Svatoš M., Smutka L. Development of agricultural foreign trade in the countries of central Europe. Supported by the ministry of education, youth and sports of the Czech Republic. Agric. Econ. 2010 doi: 10.17221/22/2010-Agricecon. DOI

Durgula V.J., Dunay A., Thalmeiner G., Vajai B., Pataki L. Financial analysis and survival research of the visegrad countries' health industries. Sustain. Times. 2023;12360 doi: 10.3390/su151612360. DOI

Tuğçe B. The concentration of the agriculture and livestock sector in the visegrad group after membership to the European Union. Econ of agriculture. 2023 doi: 10.59267/ekoPolj2303867T. DOI

Krause J., Machek O. A comparative analysis of organic and conventional farmers in the Czech Republic. Agric. Econ. 2018;64(1):1–8. doi: 10.17221/161/2016-Agricecon. DOI

Zámková M., Rojík S., Prokop M., Činčalová S., Stolín R. National labelling system of organic agriculture and food products—how familiar are Czech consumers with the national organic agri-food brand? Agriculture. 2024;14:100. doi: 10.3390/agriculture14010100. DOI

European Commission Agriculture and rural development. 2022. https://agriculture.ec.europa.eu/news/commission-approves-cap-strategic-plans-czechia-and-slovakia-2022-11-24_en#:∼:text=Slovakia's%20Plan%20aims%20to%20increase,%2D%20and%20medium%2Dsized%20holdings

Malá Z., Malý M. The determinants of adopting organic farming practices: a case study in the Czech Republic. Agric. Econ. 2012 doi: 10.17221/10/2012-Agricecon. DOI

Kononets Y., Konvalina P., Bartos P., Smetana P. The evolution of organic food certification. Front. Sustain. Food Syst. 2023 doi: 10.3389/fsufs.2023.1167017. DOI

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Fully_organic_farms_in_the_EU.

Zieliński M., Wrzaszcz W., Sobierajewska J., Adamski M. Development and effects of organic farms in Poland, taking into account their location in areas facing natural or other specific constraints. Agriculture. 2024 doi: 10.3390/agriculture14020297. DOI

Precision farming policy economic review analysis Poland. 2024. https://programme2014-20.interreg-central.eu/Content.Node/Transfarm4.0/D.T1.1.2-Precision-farming-policy-economic-review-PL.pdf

Piwowar A., Dzikuć M., Hedvičáková M M. 2019. The Development of Organic Farming in Poland and the Czech Republic - the Scope and Directions of Changes. DOI

Petrović B., Bumbálek R., Zoubek T., Kuneš R., Smutný L., Bartoš P. Application of precision agriculture technologies in Central Europe-review. Journal of Agriculture and Food Research. 2024 doi: 10.1016/j.jafr.2024.101048. DOI

Richterová E., Richter M., Sojková Z. Regional eco-efficiency of theagricultural sector in V4 regions, its dynamics in time and decomposition on the technologicaland pure technical eco-efficiency change. Equilibrium. Quarterly J of Econ and Econ Policy. 2021 doi: 10.24136/eq.2021.020. DOI

Palšová L., Schwarczová L., Schwarcz P., Bandlerová A. The support of implementation of organic farming in the Slovak Republic in the context of sustainable development. Procedia - Social and Behavioral Sci. 2014 doi: 10.1016/j.sbspro.2013.12.896. DOI

Takácsné G.K., Lámfalusi I., Molnár A., Sulyok D., Gaál M., Z H., Keményné, Domán C., Illés I., Kiss A., Krisztina P., Kemény G. Precision agriculture in Hungary: assessment of perceptions and accounting records of FADN arable farms. Studies in Agricultural Economics. 2018;120:47–54. doi: 10.7896/j.1717. DOI

Barabanova Y., Zanoli R., Schlüter M., Stopes C. IFOAM; Bonn, Germany: 2015. Transforming Food & Farming, an Organic Vision for Europe in 2030.

Drabarczyk K., Kowal J.W. vol. 111. Faculty of Economics of the Warsaw University of Life Sciences – SGGW; 2015. pp. 19–31. (Development of Organic Farming in Poland Ekonomika I Organizacja Gospodarki Żywnościowej). DOI

https://www.dw.com/en/this-is-how-the-visegrad-group-works/a-47402724.

Bolfe É.L., Jorge L.A.D.C., Sanches I.D., Luchiari J.A., Da Costa C.C., C D.D., Victoria, Inamasu R.Y., Grego C.R., Ferreira V.R., Ramirez A.R. Precision and digital agriculture: adoption of technologies and perception of Brazilian farmers. Agriculture. 2020;10(12):653. doi: 10.3390/agriculture10120653. DOI

Szabo L., Grznar M., Zelina M. Agricultural performance in the V4 countries and its position in the European Union. Agric. Econ. 2018;64:337–346. doi: 10.17221/397/2016-AGRICECON. DOI

Svatoš M., Smutka L. Development of agricultural trade and competitiveness of the commodity structures of individual countries of the Visegrad Group. Agricultural Economics. - Czech. 2012;58(5):222–238. doi: 10.17221/51/2011-Agricecon. DOI

Knězáčková R., Pás ler M. 6th Central European Conference in Regional Science. 2017. Regional development in the context of diversification and spatial concentration of industry in Visegrad countries.https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F17%3A39910858

Judit N., Zsófia J. Competitiveness in dairy trade – the Case of EU and the Visegrad group countries. AGRIS on-line Papers in Economics and Informatics. 2019;11(4) Czech University of Life Sciences, Faculty of Economics and Management.

Invivo Focus on precision agriculture. 2016. Available: www.invivo-group.com/en/focusprecision-agriculture.

Jones J.W., Antle J.M., Basso B., Boote K.J., Conant R.T., Foster I., Godfray H.C.J., Herrero M., Howitt R.E., Janssen S., Keating B.A., Carpena R.M., Porter C.H., Rosenzweig C., Wheeler T.R. Brief history of agricultural systems modeling. Agric. Syst. 2016 doi: 10.1016/j.agsy.2016.05.014. PubMed DOI PMC

Bouman B.A.M., van Keulen H., van Laar H.H., Rabbinge R. The ‘school of de wit’ crop growth simulation models: a pedigree and historical overview. Agric. Syst. 1996;52(2–3) doi: 10.1016/0308-521X(96)00011-X. DOI

Mulla J.D. Twenty-five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 2013 doi: 10.1016/j.biosystemseng.2012.08.009. DOI

Vadlamudi Siddhartha. How artificial intelligence improves agricultural productivity and sustainability: a global thematic analysis. Asia Pacific Journal of Energy and Environment. 2024 doi: 10.18034/apjee.v6i2.542. DOI

USDA Economic Research Service U.S. Department of Agriculture https://www.ers.usda.gov/publications/pub-details/?pubid=105893.

Žížala D., Minařík R., Skála J., Beitlerová H., Juřicová A., Rojas J.R., Penížek V., Zádorová T. High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic. Catena. 2022 doi: 10.1016/j.catena.2022.106024. DOI

European Commission: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en.

Say S.M., Keskin M., Sehri M., Sekerli Y.E. International Science and Technology Conference. 2017. Adoption of precision agriculture technologies in developed and developing countries. July 17-19, 2017 Berlin ,Germany.

Country Report, 2023 - Slovakia - Economy and Finance https://economy-finance.ec.europa.eu/system/files/2023-05/SK_SWD_2023_625_en.pdf.

Country Report, 2023 - Hungary - Economy and Finance https://economy-finance.ec.europa.eu/system/files/2023-06/ip241_en.pdf.

Milics G., Igor M., Magyar F., Varga P.M. Data-based agriculture in the V4 countries –sustainability, efficiency and safety. Scientia et Securitas. 2022;2(4):491–503. doi: 10.1556/112.2021.00072. DOI

Rohilla S., Chhimpa R. In: AdvancingExtension Education: Innovations and Insights. Shubham, Arulmanikandan B., editors. 2024. Education and training inAgriculture: learning from each other; pp. 67–77.

Sanyaolu M., Sadowski A. The role of precision agriculture technologies in enhancing sustainable agriculture. Sustainability. 2024;16(15):6668. doi: 10.3390/su16156668. DOI

Singh A., Janu N., Trivedi S., Jain M. Conference: 2022 IEEE World Conference on Applied Intelligence and Computing (AIC) 2022. Precision agriculture and machine learning. DOI

Sharma A., Jain A., Gupta P., Chowdary V. Machine learning applications for precision agriculture: a comprehensive review,". IEEE Access. 2021;9:4843–4873. doi: 10.1109/ACCESS.2020.3048415. 20. DOI

Papadopoulos G., Arduini S., Uyar H., Psiroukis V., Kasimati A., Fountas S. Economic and environmental benefits of digital agricultural technologies in crop production: a review. Smart Agricultural Technology. 2024 doi: 10.1016/j.atech.2024.100441. DOI

Masi M., De Rosa M., Vecchio Y., Bartoli L., Adinolfi F. The long way to innovation adoption: insights from precision agriculture. Agric. Econ. 2022 doi: 10.1186/s40100-022-00236-5. DOI

Paustian M., Theuvsen L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2017;18(5):701–716. doi: 10.1007/s11119-016-9482-5. DOI

Ministry of Agriculture Organic Production and Organic Food Financial support. https://mze.gov.cz/public/portal/en/mze/organic-production-and-organic-food/financial-support?form=MG0AV3.

Łuczka W., Kalinowski S., Shmygol N. Organic farming support policy in a sustainable development context: a polish case study. Energies. 2021;14(14):4208. doi: 10.3390/en14144208. DOI

Bliss K., Padel S., Cullen B., Ducottet C., Mullender S., Rasmussen A.I., Moeskops B. Exchanging knowledge to improve organic arable farming: an evaluation of knowledge exchange tools with farmer groups across Europe. Org. Agr. 2019;9:383–398. doi: 10.1007/s13165-018-0238-6. DOI

Panday D., Bhusal N., Das S., Ghalehgolabbehbahani A. Rooted in nature: the rise, challenges, and potential of organic farming and fertilizers in agroecosystems. Sustainability. 2024;16(4):1530. doi: 10.3390/su16041530. DOI

https://www.agroberichtenbuitenland.nl/actueel/nieuws/2022/02/25/hungary-agro-education.

Surówka M., Popławski L., Fidlerová H. Technical infrastructure as an element of sustainable development of rural regions in małopolskie voivodeship in Poland and trnava region in Slovakia. Agriculture. 2021;11(2):141. doi: 10.3390/agriculture11020141. DOI

Konečná M.M., Sutherland Lee-Ann. Digital innovations in the Czech republic: developing the inner circle of the triggering change model. J. Agric. Educ. Ext. 2022 doi: 10.1080/1389224X.2022.2039247. DOI

Szabo L., Grznar M., Zelina M. Agricultural performance in the V4 countries and its position in the European Union. Agricultural Economics - Czech. 2018;64(8):337–346. doi: 10.17221/397/2016-Agricecon. DOI

Gamage A., Gangahagedara R., Gamage J., Jayasinghe N., Kodikara N., Suraweera P., Merah O. Role of organic farming for achieving sustainability in agriculture. Farming System. 2023 doi: 10.1016/j.farsys.2023.100005. DOI

Sean C. Organic farming and climate change: the need for innovation. Sustainability. 2020;12(17):7012. doi: 10.3390/su12177012. DOI

Chaichi W., Djazouli Z., Zebib B., Merah O. Effect of vermicompost tea on faba bean growth. Compost Sci. Util. 2018;26(4):279–285. doi: 10.1080/1065657X.2018.1528908. 2018. DOI

Salim D., De Caro P., Merah O., Chbani A. Control of postharvest citrus green mold using Ulva lactuca extracts as a source of active substances. Int. J. Biodivers. Sci. Manag. 2020 doi: 10.23910/1.2020.2107. DOI

Merah O., Djazouli Z.-E., Zebib B. Aqueous extract of Algerian Nettle (Urtica dioïca L.) as possible alternative pathway to control some plant diseases. Accepté pour publication dans Iranian J. Sci. Technol. Trans. A.: Science. 2021;45:463–468. doi: 10.1007/s40995-021-01061-z. DOI

Dhillon R., Moncur Q. Small-scale farming: a review of challenges and potential opportunities offered by technological advancements. Sustainability. 2023;15(21) doi: 10.3390/su152115478. DOI

F Saleem M., Raza A., Sabir R.M., Safdar M., Faheem M., Al Ansari M.S., Hussain S. Applications of sensors in precision agriculture for a sustainable future. Agriculture and Aquaculture Applications of Biosensors and Bioelectronics. 2024 doi: 10.4018/979-8-3693-2069-3.ch006. DOI

Gupta S., Tripathi A.K. Fruit and vegetable disease detection and classification: recent trends, challenges, and future opportunities. Eng. Appl. Artif. Intell. 2024 doi: 10.1016/j.engappai.2024.108260. DOI

Zumr D. In: Impact of Agriculture on Soil Degradation II. Pereira P., Muñoz-Rojas M., Bogunovic I., Zhao W., editors. vol. 121. Springer; Cham: 2022. Agricultural land degradation in the Czech republic. (The Handbook of Environmental Chemistry). DOI

Mozny M., Hajkova L., Vlach V., Ouskova V., Musilova A. Changing climatic conditions in Czechia require adaptation measures in agriculture. Climate. 2023;11(10):210. doi: 10.3390/cli11100210. DOI

https://www.eea.europa.eu/themes/sustainability-transitions/sustainable-development-goals-and-the/country-profiles/poland-country-profile-sdgs-and?form=MG0AV3.

Stuczyiński T., Demidowicz G., Deputat T., Górski T., Krasowicz S., Kuś J. Adaptation scenarios of agriculture in Poland to future climate changes. Environ. Monit. Assess. 2000;61 doi: 10.1023/A:1006378420994. DOI

Benďáková V., Nagy H., Turčeková N., Adamičková I., Bielik P. Assessing the climate change impacts on maize production in the Slovak republic and their relevance to sustainability: a case study. Sustainability. 2024;16(13):5573. doi: 10.3390/su16135573. DOI

Dowla M.N.U., Edwards I., O'Hara G., Islam S., Ma W. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes. Engineering. 2018;4:514–522.

Jobbágy J., Bulla M., Bullová T. Application and efficiency of micro sprinkler irrigation. Visegr. J. Bioecon. Sustain. Dev. 2023;12:6.

Izakovičová Z., Špulerová J., Raniak A. The development of the Slovak agricultural landscape in a changing world. Front. Sustain. Food Syst. 2022 doi: 10.3389/fsufs.2022.862451. DOI

Birkás M., Jolánkai M., Gyuricza C., Percze A. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Till. Res. 2024 doi: 10.1016/j.still.2004.02.006. DOI

Kovács G.P., Simon B., Balla I., Bozóki B., Dekemati I., Gyuricza C., Percze A., Birkás M. Conservation tillage improves soil quality and crop yield in Hungary. Agronomy. 2023;13(3):894. doi: 10.3390/agronomy13030894. DOI

Tey Y.S., Brindal M. Factors influencing the adoption of precision agricultural technologies: a review for policy implications. Precis. Agric. 2012;13:713–730. doi: 10.1007/s11119-012-9273-6. DOI

Bruce E., Scott F., David C., Sharon C. Knowledge, skills, and abilities in the precision agriculture Workforce: an Industry Survey. J. Nat. Resour. Life Sci. Educ. 2018 doi: 10.4195/nse2018.04.0010. DOI

Reichardt M., Jürgens C. Adoption and future perspective of precision farming in Germany: results of several surveys among different agricultural target groups. Precis. Agric. 2009;10:73–94. doi: 10.1007/s11119-008-9101. 2009. DOI

Fausti S.W., Erickson B., Clay S., Schumacher L., Clay D., Skouby D. Educator survey: do institutions provide the precision agriculture education needed by agribusiness? J of Agribusis. 2018;(1):41–63. doi: 10.22004/ag.econ.302474. DOI

European commission Agriculture and rural development. 2023. https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan/eu-organic-awards_en

L. Mamais, I. Milosavljevic, N. Khabarov. Farm management support in Poland, 2019. European Association of Remote Sensing Companies (EARSC). https://earsc.org/sebs/wp-content/uploads/2019/10/Sebs-flyers-Polish2_190930.pdf.

Maloku D. Romanian Foundation for Business Intelligence, Editorial Department; 2020. Adoption of Precision Farming Technologies: USA and EU Situation, SEA - Practical Application of Sci; pp. 7–14. 22.

Daberkow S.G., McBrid W.D. Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precis. Agric. 2023;4:163–177. doi: 10.1023/A:1024557205871. DOI

Swinton S.M., Lowenberg D.J. Global adoption of precision agriculture technologies: who, when and why. Proceedings of the 3rd European conference on precision agriculture. 2001;2:557–562. Citeseer.

Esses D., Csete M.S., Németh B. Sustainability and digital transformation in the visegrad group of central European countries. Sustain. Times. 2021;5833 doi: 10.3390/su13115833. DOI

Feroz A.K., Zo H., Chiravur A. Digital transformation and environmental sustainability: a Review and research agenda. Sustain. Times. 2021 doi: 10.3390/su13031530. DOI

Slovakia Precision Agriculture Market: https://www.6wresearch.com/industry-report/slovakia-precision-agriculture-market?form=MG0AV3.

Carli G., Xhakollari V., Tagliaventi M.R. How to model the adoption and perception of precision agriculture technologies. Precision Agriculture, Technology and Economic Perspectives. Progress in Precision Agriculture. 2017 doi: 10.1007/978-3-319-68715-5_11. 2017. DOI

Castle M.H., Lubben B.D., Luck J.D. Factors influencing the adoption of precision agriculture technologies by Nebraska producers. UNL Digital Commons. 2016 https://digitalcommons.unl.edu/ageconworkpap/49/

Robertson M.J., Llewellyn R.S., Mandel R., Lawes R., Bramley R.G.V., Swift L., Metz N., O'Callaghan C. Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects. Precis. Agric. 2012;13:181–199. 2012.

Sarri D., Lombardo S., Pagliai A., Perna C., Lisci R., De Pascale V., Rimediotti M., Cencini G., Vieri M. Smart FarmingIntroduction in wine farms: a systematic review and a new proposal. Sustainability. 2020;12(17):7191. doi: 10.3390/su12177191. DOI

Cosby A.M., Falzon G.A., Trotter M.G., Stanley J.N., Powell K.S., Lamb D.W. Risk mapping of redheaded cockchafer(Adoryphorus colony) (Burmeister) infestations using a combination of novel k-means clustering and on-the-go plant and soil sensing technologies. Precis. Agric. 2016;17:1–17. doi: 10.1007/s11119-015-9403-z. 2016. DOI

Rogovska N., Laird D.A., Chiou C.P., Bond L.J. Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management. Precis. Agric. 2019;20:40–55.

Bai A., Kovách I., Czibere I., Megyesi B., Balogh B. Examining the adoption of drones and categorisation of precision elements among Hungarian precision farmers using a trans-theoretical model. Drones. 2022;6(8):200. doi: 10.3390/drones6080200. DOI

Barnes A., De Soto I., Eory V., Beck B., Balafoutis A., Sánchez B., Vangeyte J., Fountas S., Van der Wal T., Gómez-Barbero M. Influencing factors and incentives on the intention to adopt precision agricultural technologies within arable farming systems. Environ Sci & Policy. 2019;2019:66–74. doi: 10.1016/j.envsci.2018.12.014. DOI

Sacchi G., Romanello L., Canavari M. The future of organic certification: potential impacts of the inclusion of Participatory Guarantee Systems in the European organic regulation. Agric. Econ. 2024;12:2. doi: 10.1186/s40100-023-00294-3. DOI

Agarwal S., Agarwal A., Sharma G.L., Kothari H., Maloo S.R. In: Intelligent Sustainable Systems. WorldS4 2023. Nagar A.K., Jat D.S., Mishra D.K., Joshi A., editors. vol. 817. Springer; Singapore: 2024. Organic farming issues and challenges: application of ICT. (Lecture Notes in Networks and Systems). DOI

Mana A.A., Allouhi A., Hamrani A., Rehman S., el Jamaoui I., Jayachandran K. Smart Agricultural Technology. 2024. Sustainable AI-based production agriculture: exploring AI applications and implications in agricultural practices. DOI

Farm to Fork strategy - ec. 2019. https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en Retrieved from.

Clapp J., Ruder S.L. Precision technologies for agriculture: digital farming, gene-edited crops, and the politics of sustainability. Global Environ. Polit. 2020;20(3):49–69. doi: 10.1162/glep_a_00566. DOI

Saiz-Rubio V., Rovira-Más F. From smart farming towards agriculture 5.0: a review on crop data management. Agronomy. 2020;10(2):207. doi: 10.3390/agronomy10020207. DOI

Durham T.C., Mizik T. Comparative economics of conventional, organic, and alternative agricultural production systems. Economies. 2021;9(2):64. doi: 10.3390/economies9020064. DOI

Bongiovanni R., Lowenberg D.J. Precision agriculture and sustainability. Precis. Agric. 2024;5:359–387. doi: 10.1023/B:PRAG.0000040806.39604.aa. DOI

Kamble S.S., Gunasekaran A., Gawankar S.A. Sustainable industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. Process Safety and Environ Protection. 2018;117:408–425. doi: 10.1016/j.psep.2018.05.009. DOI

Smolkova B., Dusinska M., Gabelova A. Encyclopedia of Environmental Health; J of Nanobiotechnology. 2019. Epigenetic effects of nanomaterials; pp. 678–685. ISBN 978-0-444-63952-3.

Jedlicka M. Precizní zemědělství v chovech zvířat (precision agriculture in animal farming) 2022. https://naschov.cz/precizni-zemedelstvi-v-chovech-zvirat/ Available online:

Balafoutis A.T., Beck B., Fountas S., Tsiropoulos Z., Vangeyte J., Van der Wal T., Soto-Embodas I., Gómez-Barbero M., Pedersen S.M. Smart farming technologies–description, taxonomy and economic impact. Precision Agriculture, Technology and Economic Perspectives. Progress in Precision Agriculture. 2017:21–77. ISBN 978-3-319-68713-1.

Redden R. Genetic modification for agriculture. Proposed revision of GMO regulation in Australia. Plants. 2021;10(4):747. doi: 10.3390/plants10040747. PubMed DOI PMC

Ratnesh K., Aadhar G., Parth D., Shubh G., Saurabh D. Design of automatic seed sowing Machine for agriculture sector. Mater. Today. 2022 doi: 10.1016/j.matpr.2022.03.188. DOI

Diego T.F., Lorenzo S., Eleonora M., Alessandro G. Towards autonomous mapping in agriculture: a review of supportive technologies for ground robotics. Robot. Autonom. Syst. 2023 doi: 10.1016/j.robot.2023.104514. DOI

Vázquez-Arellano M., Griepentrog H.W., Reiser D., Paraforos D.S. 3-D Imaging systems for agricultural applications-A Review. Sensors. 2016;16(5):618. doi: 10.3390/s16050618. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...