• This record comes from PubMed

Exploration of stagnation-point flow of Reiner-Rivlin fluid originating from the stretched cylinder for the transmission of the energy and matter

. 2025 Feb 22 ; 15 (1) : 6515. [epub] 20250222

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 39987211
PubMed Central PMC11846857
DOI 10.1038/s41598-025-90298-4
PII: 10.1038/s41598-025-90298-4
Knihovny.cz E-resources

This research focuses on non-Newtonian stagnation-bioconvective point flow near a stretched cylinder along the Reiner-Rivlin model. The study incorporates thermal and mass transfers, considering thermodynamic diffusion, bioconvection, and viscous heating. Entropy production analysis is included to assess the inherent uncertainty in transport processes. The computational framework is developed under prescribed wall temperature and concentration conditions, which are essential for achieving self-similar solutions. Numerical findings are collected using MATLAB's "bvp4c" technique. The numerical outcomes are validated by comparing them with solutions for specific parameter values. The impact of curvature on boundary layer behavior is investigated for a range of governing parameters. For Reiner-Rivlin fluids, the skin friction coefficient is calculated to determine the force exerted by the straining cylinder. Additionally, a rise in the Reiner-Rivlin fluid factor causes a reduction in the surface cooling rate. Mainly the flow patterns observed by considering the quantity of parameters as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on all profiles.

See more in PubMed

Chamkha, A. J. Hydromagnetic plane and axisymmetric flow near a stagnation point with heat generation. Int. Commun. Heat Mass Transf.25(2), 269–278 (1998).

Takhar, H. S., Chamkha, A. J. & Nath, G. Unsteady mixed convection on the stagnation-point flow adjacent to a vertical plate with a magnetic field. Heat Mass Transf.41, 387–398 (2005).

Mahdy, A. E. N., Hady, F. M. & Nabwey, H. A. Unsteady homogeneous-heterogeneous reactions in MHD nanofluid mixed convection flow past a stagnation point of an impulsively rotating sphere. Therm. Sci.25(1 Part A), 243–256 (2021).

Mahdy, A., Chamkha, A. J. & Nabwey, H. A. Entropy analysis and unsteady MHD mixed convection stagnation-point flow of Casson nanofluid around a rotating sphere. Alex. Eng. J.59(3), 1693–1703 (2020).

Baig, M. N. J. et al. Exact analytical solutions of stagnation point flow over a heated stretching cylinder: A phase flow nanofluid model. Chin. J. Phys.86, 1–11 (2023).

Sharma, M. et al. Optimization of heat transfer nanofluid blood flow through a stenosed artery in the presence of Hall effect and hematocrit dependent viscosity. Case Stud. Therm. Eng.47, 103075 (2023).

Khanduri, U., Sharma, B. K., Sharma, M., Mishra, N. K. & Saleem, N. Sensitivity analysis of electroosmotic magnetohydrodynamics fluid flow through the curved stenosis artery with thrombosis by response surface optimization. Alex. Eng. J.75, 1–27 (2023).

Mahabaleshwar, U. S., Maranna, T., Mishra, M., Hatami, M. & Sunden, B. Radiation effect on stagnation point flow of Casson nanofluid past a stretching plate/cylinder. Sci. Rep.14(1), 1387 (2024). PubMed PMC

Ahmed, B. Information of stagnation-point flow of Maxwell fluid past symmetrically exponential stretching/shrinking cylinder with prescribed heat flux. Am. Inst. Phys.13, 045314 (2023).

Khan, U. & Mahmood, Z. MHD stagnation point flow of ternary hybrid nanofluid flow over a stretching/shrinking cylinder with suction and ohmic heating (2022).

Kumar, A., Sharma, B. K., Gandhi, R., Mishra, N. K. & Bhatti, M. M. Response surface optimization for the electromagnetohydrodynamic Cu-polyvinyl alcohol/water Jeffrey nanofluid flow with an exponential heat source. J. Magn. Magn. Mater.576, 170751 (2023).

Reddy, M. V., Vajravelu, K., Ajithkumar, M., Sucharitha, G. & Lakshminarayana, P. Numerical treatment of entropy generation in convective MHD Williamson nanofluid flow with Cattaneo–Christov heat flux and suction/injection. Int. J. Model. Simul.10.1080/02286203.2024.2405714 (2024).

Singh, S. P., Upreti, H. & Kumar, M. Stagnation point flow of hybrid nanofluid driven towards a sinusoidal-radius permeable circular cylinder. Int. J. Model. Simul.10.1080/02286203.2024.2395900 (2024).

Adnan, I. Z., Elattar, S., Abbas, W., Alhazmi, S. E. & Yassen, M. F. Thermal enhancement in buoyancy-driven stagnation point flow of ternary hybrid nanofluid over vertically oriented permeable cylinder integrated by nonlinear thermal radiations. Int. J. Mod. Phys. B37(22), 2350215 (2023).

Vinodkumar Reddy, M., Vajravelu, K., Ajithkumar, M., Sucharitha, G. & Lakshminarayana, P. Analysis of entropy generation and activation energy on a convective MHD Carreau–Yasuda nanofluid flow over a sheet. Mod. Phys. Lett. B10.1142/S021798492450266X (2024).

Moatimid, G. M., Mohamed, M. A. & Elagamy, K. Heat and mass flux through a Reiner–Rivlin nanofluid flow past a spinning stretching disc: Cattaneo–Christov model. Sci. Rep.12(1), 14468 (2022). PubMed PMC

Nasir, S., Shehzad, S. A. & Khattab, T. The thermally radiative chemically reactive flow of Reiner–Rivlin nanofluid through porous medium with Newtonian conditions. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng.10.1177/09544089241274045 (2024).

Khan, S. A., Razaq, A., Alsaedi, A. & Hayat, T. Modified thermal and solutal fluxes through the convective flow of Reiner–Rivlin material. Energy283, 128516 (2023).

Yasin, M., Hina, S. & Naz, R. Influence of Hall and Slip-on MHD Reiner–Rivlin blood flow through a porous medium in a cylindrical tube. Soft Comput.28(4), 2799–2810 (2024).

Khan, S. U., Adnan, R. K., Riaz, A., Awais, M. & Bhatti, M. M. Insights into the impact of Cattaneo–Christov heat flux on bioconvective flow in magnetized Reiner–Rivlin nanofluids. Separat. Sci. Technol.59(10–14), 1172–1182 (2024).

Dashes, N. & Singh, S. Study of the non-Newtonian behaviour of Reiner Rivlin relative to a power law in arterial stenosis. Comput. Methods Differ. Equ.10(4), 928–941 (2022).

Nebiyal, A., Swaminathan, R. & Karpagavalli, S. G. Theoretical analysis of nanofluid’s random diffusion with chemical reaction over a stretchable rotating disk using Homotopy Analysis Method. Am. Inst. Phys. Conf. Proc.3160(1), 130012 (2024).

Sadighi, S., Jabbari, M., Afshar, H. & Ashtiani, H. A. D. MHD heat and mass transfer nanofluid flow on a porous cylinder with chemical reaction and viscous dissipation effects: Benchmark solutions. Case Stud. Therm. Eng.40, 102443 (2022).

Majeed, A. H. et al. Heat and mass transfer characteristics in MHD Casson fluid flow over a cylinder in a wavy channel: Higher-order FEM computations. Case Stud. Therm. Eng.42, 102730 (2023).

Yu, Z. & Hunt, G. R. Local linear stability of plumes generated along vertical heated cylinders in stratified environments. J. Fluid Mech.971, A1 (2023).

Bilal, M. et al. Williamson magneto nanofluid flow over partially slip and convective cylinder with thermal radiation and variable conductivity. Sci. Rep.12(1), 12727 (2022). PubMed PMC

Afzal, S., Qayyum, M. & Chambashi, G. Heat and mass transfer with entropy optimization in hybrid nanofluid using a heat source and velocity slip: A Hamilton–Crosser approach. Sci. Rep.13(1), 12392 (2023). PubMed PMC

Najib, N. & Bachok, N. Numerical analysis of boundary layer flow and heat transfer over a shrinking cylinder. Comput. Fluid Dyn. (CFD) Letters14(5), 56–67 (2022).

Abdel-Wahed, M. S. & El-Said, E. M. Magnetohydrodynamic flow and heat transfer over a moving cylinder in a nanofluid under convective boundary conditions and heat generation. Therm. Sci.23(6 Part B), 3785–3796 (2019).

Islam, M., Kumar, S., Fatt, Y. Y. & Janajreh, I. Flow-induced vibration and heat transfer in arrays of cylinders: Effects of transverse spacing and cylinder diameter. Int. Commun. Heat Mass Transf.149, 107159 (2023).

Shah, R. & van der Heijden, G. H. M. Static friction models for a rod deforming on a cylinder. J. Mech. Phys. Solids173, 105224 (2023).

Castro, S. G., Almeida, J. H. S. Jr., St-Pierre, L. & Wang, Z. Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setup. Compos. Struct.276, 114497 (2021).

Belhaou, M., Laghzale, N. E. & Bouzid, H. Analysis of plastically deformed functionally graded pressurized thick cylinder. Arab J. Basic Appl. Sci.29(1), 372–381 (2022).

Cham, A. & Mustafa, M. Exploring the dynamics of second-grade fluid motion and heat over a deforming cylinder or plate affected by partial slip conditions. Arab. J. Sci. Eng.49(2), 1505–1514 (2024).

Becks, A., Korenyi-Both, T., McNamara, J. J. & Gaitonde, D. V. The impact of upstream static deformation on flow past a cylinder/flare. Aerospace11(5), 412 (2024).

Wu, J. & Li, Y. Structure design and deformation analysis of double hydraulic cylinder deep-sea pressure simulator. J. Phys.: Conf. Ser.2724(1), 012018 (2024).

Robin, M. R. H., Hossain, M. R. & Saha, S. Entropy generation of pure mixed convection from double circular cylinders rotating inside a confined channel. Case Stud. Therm. Eng.49, 103395 (2023).

Malik, R., Sadaf, H. & Raheem, S. Entropy production in the swirling flow of viscous nanofluid over a stretching cylinder embedded in a porous medium. Comput. Part. Mech.11(3), 977–988 (2024).

Saboj, J. H., Nag, P., Saha, G. & Saha, S. C. Entropy production analysis in an octagonal cavity with an inner cold cylinder: A thermodynamic aspect. Energies16(14), 5487 (2023).

Chokoe, I., Makinde, O. D. & Monaledi, R. L. Analysis of entropy generation in unsteady flow of nanofluids past a convectively heated moving permeable cylindrical surface. Arch. Thermodyn.45(3), 107–113 (2024).

Rooman, M., Jan, M. A., Shah, Z. & Alzahrani, M. R. Entropy generation and nonlinear thermal radiation analysis on axisymmetric MHD Ellis nanofluid over a horizontally permeable stretching cylinder. Waves Random Complex Med.34(2), 1–15 (2022).

Ali, M. Y., & Rahman, M. Statistical analysis and entropy generation of periodic MHD radiative casson fluid past inclined porous cylinder with chemical reaction impact. Available at SSRN 4810853.

Ahmad, S. et al. Thermal and solutal energy transport analysis in entropy generation of hybrid nanofluid flow over a vertically rotating cylinder. Front. Phys.10, 988407 (2022).

Rezaee, V. & Houshmand, A. Numerical solution of non-similar boundary-layer flow over a cylinder. J. Serb. Soc. Comput. Mech.17(1), 134–150 (2023).

Yasmin, H., Lone, S. A., Anwar, S., Shahab, S. & Saeed, A. Numerical calculation of thermal radiative boundary layer nanofluid flow across an extending inclined cylinder. Symmetry15(7), 1424 (2023).

Najib, N. & Bachok, N. Numerical analysis of boundary layer flow and heat transfer over a shrinking cylinder. CFD Lett.14(5), 56–67 (2022).

Nguyen, Q. D., Lu, W., Chan, L., Ooi, A. & Lei, C. A state-of-the-art review of flows past confined circular cylinders. Phys. Fluids35(7), 071301 (2023).

Nikarya, M. An analysis of boundary layer flows over a vertical slender cylinder via spectral method. Int. J. Ind. Eng. Manag. Sci.9(1), 35–43 (2022).

Gintrand, A. & Moreno-Gelos, Q. Self-similar solutions in cylindrical magneto-hydrodynamic blast waves with energy injection at the center. Month. Not. R. Astron. Soc.520(2), 1950–1962 (2023).

Takabe, H. Self-similar solutions of compressible fluids. In The Physics of Laser Plasmas and Applications-Volume 2: Fluid Models and Atomic Physics of Plasmas, 149–196 (Springer International Publishing, 2024)

MS, I., Lakshminarayana, P., Sucharitha, G., Vinodkumar Reddy, M. & Vajravelu, K. Analysis of entropy optimization in MHD flow of non-newtonian nanofluids with chemical reaction and thermal energies. J. Comput. Theoret. Transp.10.1080/23324309.2024.2419008 (2024).

Nath, G. A self-similar solution for the flow behind an exponential cylindrical shock in a self-gravitating mixture of non-ideal gas and a pseudo-fluid of solid particles in a rotating medium. Chin. J. Phys.84, 451–470 (2023).

Kirsur, S. R. & Joshi, S. R. Exact and analytical solutions for self-similar thermal boundary layer flow over a moving wedge. Heat Transf.53(3), 1586–1606 (2024).

Gad, R. M. & Al-Jedani, A. Self-similar solutions of a Bianchi type-III model with a perfect fluid and cosmic string cloud in riemannian geometry. Symmetry15(9), 1703 (2023).

Aljaloud, A. S. M., Manai, L. & Tlili, I. Bioconvection flow of cross nanofluid due to cylinder with activation energy and second order slip features. Case Stud. Therm. Eng.42(102767), 2023 (2023).

Khan, A. et al. Bioconvection Maxwell nanofluid flow over a stretching cylinder influenced by chemically reactive activation energy surrounded by a permeable medium. Front. Phys.10, 1065264 (2023).

Awwad, F. A., Ismail, E. A., Gul, T., Khan, W. & Ali, I. Melting heat transfer rheology in bioconvection cross nanofluid flow confined by a symmetrical cylindrical channel with thermal conductivity and swimming microbes. Symmetry15(9), 1647 (2023).

Rashad, A. M. & Mansour, M. A. Natural bioconvective flow through a vertical cylinder in porous media drenched with a nanofluid. J. Nanofluids11(3), 340–349 (2022).

Basit, M. A., Imran, M., Mohammed, W. W., Ali, M. R. & Hendy, A. S. Thermal analysis of mathematical model of heat and mass transfer through bioconvective Carreau nanofluid flow over an inclined stretchable cylinder. Case Stud. Therm. Eng.63, 105303 (2024).

Basit, M. A., Imran, M., Akgül, A., Hassani, M. K. & Alhushaybari, A. Mathematical analysis of heat and mass transfer efficiency of bioconvective Casson nanofluid flow through conical gap among the rotating surfaces under the influences of thermal radiation and activation energy. Res. Phys.63, 107863 (2024).

Nima, N. I. & Ferdows, M. Investigation of bioconvection in a non-newtonian fluid flow with different slip effects over a vertical cylinder with suction or injection. J. Adv. Res. Fluid Mech. Therm. Sci.121(1), 202–213 (2024).

Galal, A. M. et al. Numerical exploration of bioconvection in optimizing nanofluid flow through heated stretched cylinder in existence of magnetic field. Multidiscip. Model. Mater. Struct.10.1108/MMMS-08-2024-0239 (2024).

Cham, A. & Mustafa, M. Examining stagnation-point flow impinging on a deforming cylinder in Reiner–Rivlin fluid with integrated heat and mass transfer. Case Stud. Therm. Eng.60, 104598 (2024).

Gull, L., Mushtaq, A., Mehmood, T. & Mustafa, M. Exploring slip flow of viscoelastic fluid with frictional heating effects: Uncertainty analysis using response surface methodology (RSM). Int. Commun. Heat Mass Transf.155, 107548 (2024).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...