Novel C-2 Aromatic Heterocycle-Substituted Triterpenoids Inhibit Hedgehog Signaling in GLI1 Overexpression Cancer Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40124057
PubMed Central
PMC11923649
DOI
10.1021/acsomega.4c11479
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The hedgehog signaling pathway plays an important role in vertebrate embryonic development, tissue homeostasis, and tumorigenesis. Constitutive activation of Hh signaling in various human tumors leads to GLI-mediated transcription and tumor progression. Based on the preliminary screening of a large library of known triterpenes that exhibited interesting Hh inhibitory activity, we designed and synthesized a new series of triterpenoid analogues containing aromatic heterocyclic substituents at position C-2 to enhance their interference with Hh signaling. In this study, we evaluated the effect of 15 synthesized triterpenoids on cell proliferation and Hh pathway activity in relevant cancer cell lines. Among these compounds, two derivatives, 11a and 11b, both featuring a furan ring at position C-2, demonstrated potent inhibitory effects on proliferation and induced cell death in nonsmall cell lung cancer (NSCLC) and prostate cancer cell lines exhibiting hyper-activated Hh signaling. Moreover, these compounds significantly reduced GLI-mediated transcription in cell-based reporter assays. Detailed immunoblot analyses revealed that compounds 11a and 11b decreased the expression of endogenous GLI1 protein and its target genes associated with tumor progression and proliferation, such as Cyclin D1, N-Myc, and Bcl-2, in A549 and DU-145 cancer cells. These findings suggest that the antiproliferative effects of 11a and 11b are mediated through inhibition of the Hh signaling pathway and are promising candidates for the development of new anticancer therapies targeting Hh-dependent tumors.
Zobrazit více v PubMed
Zhang J.; Liu Z.; Jia J. Mechanisms of Smoothened Regulation in Hedgehog Signaling. Cells 2021, 10 (8), 2138.10.3390/cells10082138. PubMed DOI PMC
Jing J.; Wu Z.; Wang J.; Luo G.; Lin H.; Fan Y.; Zhou C. Hedgehog Signaling in Tissue Homeostasis, Cancers, and Targeted Therapies. Signal Transduct. Target. Ther. 2023, 8 (1), 1–33. 10.1038/s41392-023-01559-5. PubMed DOI PMC
Jiang J. Hedgehog Signaling Mechanism and Role in Cancer. Semin. Cancer Biol. 2022, 85, 107–122. 10.1016/j.semcancer.2021.04.003. PubMed DOI PMC
Lum L.; Beachy P. A. The Hedgehog Response Network: Sensors, Switches, and Routers. Science 2004, 304 (5678), 1755–1759. 10.1126/science.1098020. PubMed DOI
Wicking C.; Smyth I.; Bale A. The Hedgehog Signalling Pathway in Tumorigenesis and Development. Oncogene 1999, 18 (55), 7844–7851. 10.1038/sj.onc.1203282. PubMed DOI
Avery J. T.; Zhang R.; Boohaker R. J. GLI1: A Therapeutic Target for Cancer. Front. Oncol. 2021, 11, 673154.10.3389/fonc.2021.673154. PubMed DOI PMC
Peer E.; Tesanovic S.; Aberger F. Next-Generation Hedgehog/GLI Pathway Inhibitors for Cancer Therapy. Cancers 2019, 11 (4), 538.10.3390/cancers11040538. PubMed DOI PMC
Nguyen N. M.; Cho J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance. Int. J. Mol. Sci. 2022, 23 (3), 1733.10.3390/ijms23031733. PubMed DOI PMC
Coupland C. E.; Andrei S. A.; Ansell T. B.; Carrique L.; Kumar P.; Sefer L.; Schwab R. A.; Byrne E. F. X.; Pardon E.; Steyaert J.; et al. Structure, mechanism, and inhibition of Hedgehog acyltransferase. Mol. Cell 2021, 81 (24), 5025–5038.e10. 10.1016/j.molcel.2021.11.018. PubMed DOI PMC
Yauch R. L.; Dijkgraaf G. J. P.; Alicke B.; Januario T.; Ahn C. P.; Holcomb T.; Pujara K.; Stinson J.; Callahan C. A.; Tang T.; Bazan J. F.; Kan Z.; Seshagiri S.; Hann C. L.; Gould S. E.; Low J. A.; Rudin C. M.; de Sauvage F. J. Smoothened Mutation Confers Resistance to a Hedgehog Pathway Inhibitor in Medulloblastoma. Science 2009, 326 (5952), 572–574. 10.1126/science.1179386. PubMed DOI PMC
Chang A. L. S.; Oro A. E. Initial Assessment of Tumor Regrowth after Vismodegib in Advanced Basal Cell Carcinoma. Arch. Dermatol. 2012, 148 (11), 1324–1325. 10.1001/archdermatol.2012.2354. PubMed DOI PMC
Pedersen K. K.; Høyer-Hansen M. H.; Litman T.; Hædersdal M.; Olesen U. H. Topical Delivery of Hedgehog Inhibitors: Current Status and Perspectives. Int. J. Mol. Sci. 2022, 23 (22), 14191.10.3390/ijms232214191. PubMed DOI PMC
Banaszek N.; Kurpiewska D.; Kozak K.; Rutkowski P.; Sobczuk P. Hedgehog Pathway in Sarcoma: From Preclinical Mechanism to Clinical Application. J. Cancer Res. Clin. Oncol. 2023, 149 (19), 17635–17649. 10.1007/s00432-023-05441-3. PubMed DOI PMC
Dzubak P.; Hajduch M.; Vydra D.; Hustova A.; Kvasnica M.; Biedermann D.; Markova L.; Urban M.; Sarek J. Pharmacological Activities of Natural Triterpenoids and Their Therapeutic Implications. Nat. Prod. Rep. 2006, 23 (3), 394–411. 10.1039/b515312n. PubMed DOI
Pokorny J.; Borkova L.; Urban M. Click Reactions in Chemistry of Triterpenes - Advances Towards Development of Potential Therapeutics. Curr. Med. Chem. 2018, 25 (5), 636–658. 10.2174/0929867324666171009122612. PubMed DOI
Cichewicz R. H.; Kouzi S. A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev. 2004, 24 (1), 90–114. 10.1002/med.10053. PubMed DOI
Jiang W.; Li X.; Dong S.; Zhou W. Betulinic Acid in the Treatment of Tumour Diseases: Application and Research Progress. Biomed. Pharmacother. 2021, 142, 111990.10.1016/j.biopha.2021.111990. PubMed DOI
Hill R. A.; Connolly J. D. Triterpenoids. Nat. Prod. Rep. 2020, 37 (7), 962–998. 10.1039/C9NP00067D. PubMed DOI
Hill R. A.; Connolly J. D. Triterpenoids. Nat. Prod. Rep. 2017, 34 (1), 90–122. 10.1039/C6NP00094K. PubMed DOI
Qian K.; Kim S.-Y.; Hung H.-Y.; Huang L.; Chen C.-H.; Lee K.-H. New Betulinic Acid Derivatives as Potent Proteasome Inhibitors. Bioorg. Med. Chem. Lett. 2011, 21 (19), 5944–5947. 10.1016/j.bmcl.2011.07.072. PubMed DOI PMC
Kazakova A.; Frydrych I.; Jakubcová N.; Pokorný J.; Lišková B.; Gurská S.; Buriánová R.; Přibylka A.; Džubák P.; Hajdúch M.; Urban M. Triterpenoid Phthalimides as Selective Anti-Cancer Agents Targeting Mitochondrial Apoptosis. Eur. J. Med. Chem. 2025, 283, 117126.10.1016/j.ejmech.2024.117126. PubMed DOI
Jonnalagadda S. C.; Corsello M. A.; Sleet C. E. Betulin-Betulinic Acid Natural Product Based Analogs as Anti-Cancer Agents. Anticancer Agents Med. Chem. 2013, 13 (10), 1477–1499. 10.2174/18715230113129990094. PubMed DOI
Borkova L.; Hodon J.; Urban M. Synthesis of Betulinic Acid Derivatives with Modified A-Rings and Their Application as Potential Drug Candidates. Asian J. Org. Chem. 2018, 7 (8), 1542–1560. 10.1002/ajoc.201800163. DOI
Eichenmüller M.; Hemmerlein B.; von Schweinitz D.; Kappler R. Betulinic Acid Induces Apoptosis and Inhibits Hedgehog Signalling in Rhabdomyosarcoma. Br. J. Cancer 2010, 103 (1), 43–51. 10.1038/sj.bjc.6605715. PubMed DOI PMC
Milan U.; Ivo F.; Lucie B.; Marián H.; Barbora V.. Triterpeny s inhibiční aktivitou na Hedgehog signální dráhu pro použití při léčbě nádorových onemocnění. CZ309885, STARFOS, 2023.
Rodríguez-Hernández D.; Demuner A. J.; Barbosa L. C. A.; Heller L.; Csuk R. Novel Hederagenin–Triazolyl Derivatives as Potential Anti-Cancer Agents. Eur. J. Med. Chem. 2016, 115, 257–267. 10.1016/j.ejmech.2016.03.018. PubMed DOI
Hodoň J.; Frydrych I.; Trhlíková Z.; Pokorný J.; Borková L.; Benická S.; Vlk M.; Lišková B.; Kubíčková A.; Medvedíková M.; Pisár M.; Šarek J.; Das V.; Ligasová A.; Koberna K.; Džubák P.; Hajdúch M.; Urban M. Triterpenoid Pyrazines and Pyridines – Synthesis, Cytotoxicity, Mechanism of Action, Preparation of Prodrugs. Eur. J. Med. Chem. 2022, 243, 114777.10.1016/j.ejmech.2022.114777. PubMed DOI
Kazakova A.; Frydrych I.; Jakubcová N.; Pokorný J.; Lišková B.; Gurská S.; Džubák P.; Hajdúch M.; Urban M. Novel Triterpenoid Pyrones, Phthalimides and Phthalates Are Selectively Cytotoxic in CCRF-CEM Cancer Cells – Synthesis, Potency, and Mitochondrial Mechanism of Action. Eur. J. Med. Chem. 2024, 269, 116336.10.1016/j.ejmech.2024.116336. PubMed DOI
Urban M.; Sarek J.; Klinot J.; Korinkova G.; Hajduch M. Synthesis of A-Seco Derivatives of Betulinic Acid with Cytotoxic Activity. J. Nat. Prod. 2004, 67 (7), 1100–1105. 10.1021/np049938m. PubMed DOI
Borková L.; Frydrych I.; Vránová B.; Jakubcová N.; Lišková B.; Gurská S.; Džubák P.; Pavliš P.; Hajdúch M.; Urban M. Lupane Derivatives Containing Various Aryl Substituents in the Position 3 Have Selective Cytostatic Effect in Leukemic Cancer Cells Including Resistant Phenotypes. Eur. J. Med. Chem. 2022, 244, 114850.10.1016/j.ejmech.2022.114850. PubMed DOI
Regueiro-Ren A.; Swidorski J. J.; Liu Z.; Chen Y.; Sin N.; Sit S.-Y.; Chen J.; Venables B. L.; Zhu J.; Nowicka-Sans B.; Protack T.; Lin Z.; Terry B.; Samanta H.; Zhang S.; Li Z.; Easter J.; Beno B. R.; Arora V.; Huang X. S.; Rahematpura S.; Parker D. D.; Haskell R.; Santone K. S.; Cockett M. I.; Krystal M.; Meanwell N. A.; Jenkins S.; Hanumegowda U.; Dicker I. B. Design, Synthesis, and SAR of C-3 Benzoic Acid, C-17 Triterpenoid Derivatives. Identification of the HIV-1 Maturation Inhibitor 4-((1R,3aS,5aR,5bR,7aR,11aS,11bR,13aR,13bR)-3a-((2-(1,1-Dioxidothiomorpholino)Ethyl)Amino)-5a,5b,8,8,11a-Pentamethyl-1-(Prop-1-En-2-Yl)-2,3,3a,4,5,5a,5b,6,7,7a,8,11,11a,11b,12,13,13a,13b-Octadecahydro-1H-Cyclopenta[a]Chrysen-9-Yl)Benzoic Acid (GSK3532795, BMS-955176). J. Med. Chem. 2018, 61 (16), 7289–7313. 10.1021/acs.jmedchem.8b00854. PubMed DOI
Lin P.; He Y.; Chen G.; Ma H.; Zheng J.; Zhang Z.; Cao B.; Zhang H.; Zhang X.; Mao X. A Novel Hedgehog Inhibitor for the Treatment of Hematological Malignancies. Anticancer. Drugs 2018, 29 (10), 995–1003. 10.1097/CAD.0000000000000679. PubMed DOI
Lemos T.; Merchant A. The Hedgehog Pathway in Hematopoiesis and Hematological Malignancy. Front. Oncol. 2022, 12, 960943.10.3389/fonc.2022.960943. PubMed DOI PMC
Liu R.; Shi P.; Wang Z.; Yuan C.; Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front. Oncol. 2021, 10, 625332.10.3389/fonc.2020.625332. PubMed DOI PMC
Yuan Z.; Goetz J. A.; Singh S.; Ogden S. K.; Petty W. J.; Black C. C.; Memoli V. A.; Dmitrovsky E.; Robbins D. J. Frequent Requirement of Hedgehog Signaling in Non-Small Cell Lung Carcinoma. Oncogene 2007, 26 (7), 1046–1055. 10.1038/sj.onc.1209860. PubMed DOI
Di L.; Kerns E. H.; Hong Y.; Chen H. Development and Application of High Throughput Plasma Stability Assay for Drug Discovery. Int. J. Pharm. 2005, 297 (1), 110–119. 10.1016/j.ijpharm.2005.03.022. PubMed DOI
Artursson P.; Palm K.; Luthman K. Caco-2 Monolayers in Experimental and Theoretical Predictions of Drug transport1PII of Original Article: S0169–409X(96)00415–2. The Article Was Originally Published in Advanced Drug Delivery Reviews 22 (1996) 67–84.1. Adv. Drug Delivery Rev. 2001, 46 (1), 27–43. 10.1016/S0169-409X(00)00128-9. PubMed DOI
Irvine J. D.; Takahashi L.; Lockhart K.; Cheong J.; Tolan J. W.; Selick H. E.; Grove J. R. MDCK (Madin-Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening. J. Pharm. Sci. 1999, 88 (1), 28–33. 10.1021/js9803205. PubMed DOI
Nassar A. F.Structural Modifications of Drug Candidates: How Useful Are They in Improving Metabolic Stability of New Drugs? Part I: Enhancing Metabolic Stability. In Drug Metabolism Handbook: Concepts and Applications; John Wiley & Sons, Ltd, 2008, pp. 253–268. DOI: 10.1002/9780470439265.ch10. DOI
Wohnsland F.; Faller B. High-Throughput Permeability pH Profile and High-Throughput Alkane/Water Log P with Artificial Membranes. J. Med. Chem. 2001, 44 (6), 923–930. 10.1021/jm001020e. PubMed DOI
Dehaen W.; Mashentseva A. A.; Seitembetov T. S. Allobetulin and Its Derivatives: Synthesis and Biological Activity. Molecules 2011, 16 (3), 2443–2466. 10.3390/molecules16032443. PubMed DOI PMC
Korovin A. V.; Tkachev A. V. Synthesis of Quinoxalines Fused with Triterpenes, Ursolic Acid and Betulin Derivatives. Russ. Chem. Bull. 2001, 50 (2), 304–310. 10.1023/A:1009598805986. DOI
Vlk M.; Urban M.; Elbert T.; Sarek J. Synthesis of Selectively Deuterated and Tritiated Lupane Derivatives with Cytotoxic Activity. J. Radioanal. Nucl. Chem. 2013, 298 (2), 1149–1157. 10.1007/s10967-013-2533-8. DOI