A Preclinical Model to Assess Intestinal Barrier Integrity Using Canine Enteroids and Colonoids
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1912948
U.S. National Science Foundation
FSU_0000022
ISU Startup
PubMed
40136526
PubMed Central
PMC11939752
DOI
10.3390/biology14030270
PII: biology14030270
Knihovny.cz E-resources
- Keywords
- Caco-2, MDCK, TEER, TEM, canine, organoid, transwell,
- Publication type
- Journal Article MeSH
While two-dimensional (2D) cell cultures, such as Caco-2 and Madin-Darby canine kidney (MDCK) cells are widely used in a variety of biological models, these two-dimensional in vitro systems present inherent limitations in replicating the complexities of in vivo biology. Recent progress in three-dimensional organoid technology has the potential to address these limitations. In this study, the characteristics of conventional 2D cell culture systems were compared to those of canine intestinal organoids (enteroids, ENT, and colonoids, COL). Light microscopy and transmission electron microscopy were employed to evaluate the microanatomy of ENT, COL, Caco-2, and MDCK cell monolayers, while transepithelial electrical resistance (TEER) values were measured to assess monolayer integrity. The TEER values of canine ENT monolayers more closely approximated reported TEER values for human small intestines compared to Caco-2 and MDCK monolayers. Additionally, canine ENT demonstrated greater monolayer stability than Caco-2 and MDCK cells. Notably, while all systems displayed desmosomes, canine ENT and COL exclusively produced mucus. These findings highlight the potential of the canine organoid system as a more biologically relevant model for in vitro studies, addressing the limitations of conventional 2D cell culture systems.
D Health Solutions Inc Athens GA 30602 USA
Department of Biomedical Sciences Iowa State University Ames IA 50011 USA
Department of Pathology Carver College of Medicine University of Iowa Iowa City IA 52242 USA
Department of Pathology College of Veterinary Medicine University of Georgia Athens GA 30602 USA
Department of Veterinary Clinical Sciences Iowa State University Ames IA 50011 USA
See more in PubMed
König J., Wells J., Cani P.D., García-Ródenas C.L., Macdonald T., Mercenier A., Whyte J., Troost F., Brummer R.-J. Human Intestinal Barrier Function in Health and Disease. Clin. Transl. Gastroenterol. 2016;7:e196. doi: 10.1038/ctg.2016.54. PubMed DOI PMC
Volpe D.A. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J. Pharm. Sci. 2008;97:712–725. doi: 10.1002/jps.21010. PubMed DOI
Fogh J., Fogh J.M., Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. JNCI J. Natl. Cancer Inst. 1977;59:221–226. doi: 10.1093/jnci/59.1.221. PubMed DOI
Gaush C.R., Hard W.L. Characterization of an established line of canine kidney cells (MDCK) Proc. Soc. Exp. Biol. Med. 1966;122:931–935. doi: 10.3181/00379727-122-31293. PubMed DOI
Volpe D.A. Application of method suitability for drug permeability classification. AAPS J. 2010;12:670–678. doi: 10.1208/s12248-010-9227-8. PubMed DOI PMC
Janssen A.W.F., Duivenvoorde L.P.M., Rijkers D., Nijssen R., Peijnenburg A.A.C.M., van der Zande M., Louisse J. Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells. Arch. Toxicol. 2021;95:907–922. doi: 10.1007/s00204-020-02953-6. PubMed DOI PMC
Anderle P., Niederer E., Rubas W., Hilgendorf C., Spahn-Langguth H., Wunderli-Allenspach H., Merkle H.P., Langguth P. P-Glycoprotein (P-gp) Mediated Efflux in Caco-2 Cell Monolayers: The Influence of Culturing Conditions and Drug Exposure on P-gp Expression Levels. J. Pharm. Sci. 1998;87:757–762. doi: 10.1021/js970372e. PubMed DOI
Mochel J.P., Jergens A.E., Kingsbury D., Kim H.J., Martin M.G., Allenspach K. Intestinal Stem Cells to Advance Drug Development, Precision, and Regenerative Medicine: A Paradigm Shift in Translational Research. AAPS J. 2018;20:17. doi: 10.1208/s12248-017-0178-1. PubMed DOI PMC
Sato T., Vries R.G., Snippert H.J., Van De Wetering M., Barker N., Stange D.E., Van Es J.H., Abo A., Kujala P., Peters P.J., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–265. doi: 10.1038/nature07935. PubMed DOI
Chandra L., Borcherding D.C., Kingsbury D., Atherly T., Ambrosini Y.M., Bourgois-Mochel A., Yuan W., Kimber M., Qi Y., Wang Q., et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol. 2019;17:33. doi: 10.1186/s12915-019-0652-6. PubMed DOI PMC
Drost J., Clevers H. Translational applications of adult stem cell-derived organoids. Development. 2017;144:968–975. doi: 10.1242/dev.140566. PubMed DOI
Gabriel V., Zdyrski C., Sahoo D.K., Dao K., Bourgois-Mochel A., Atherly T., Martinez M.N., Volpe D.A., Kopper J., Allenspach K., et al. Canine Intestinal Organoids in a Dual-Chamber Permeable Support System. J. Vis. Exp. 2022:e63612. doi: 10.3791/63612. PubMed DOI
Zhao J., Zeng Z., Sun J., Zhang Y., Li D., Zhang X., Liu M., Wang X. A Novel Model of P-Glycoprotein Inhibitor Screening Using Human Small Intestinal Organoids. Basic Clin. Pharmacol. Toxicol. 2017;120:250–255. doi: 10.1111/bcpt.12680. PubMed DOI
Nagao I., Nakazawa M., Tachibana Y., Kawasaki M., Ambrosini Y.M. Assessment of P-glycoprotein function using canine intestinal organoid-derived epithelial interfaces. Xenobiotica. 2024;54:342–349. doi: 10.1080/00498254.2024.2358395. PubMed DOI PMC
Fleischer D. Transport Processes in Pharmaceutical Systems. CRC Press; Boca Raton, FL, USA: 1999. Biological Transport Phenomena in the Gastrointestinal Tract: Cellular Mechanisms; pp. 163–200. DOI
Srinivasan B., Kolli A.R., Esch M.B., Abaci H.E., Shuler M.L., Hickman J.J. TEER Measurement Techniques for In Vitro Barrier Model Systems. JALA J. Assoc. Lab. Autom. 2015;20:107–126. doi: 10.1177/2211068214561025. PubMed DOI PMC
Gabriel V., Zdyrski C., Sahoo D.K., Dao K., Bourgois-Mochel A., Kopper J., Zeng X.-L., Estes M.K., Mochel J.P., Allenspach K. Standardization and Maintenance of 3D Canine Hepatic and Intestinal Organoid Cultures for Use in Biomedical Research. J. Vis. Exp. 2022:e63515. doi: 10.3791/63515. PubMed DOI
Meyerholz D.K., Beck A.P. Principles and approaches for reproducible scoring of tissue stains in research. Lab Invest. 2018;98:844–855. doi: 10.1038/s41374-018-0057-0. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Zdyrski C., Gabriel V., Gessler T.B., Ralston A., Sifuentes-Romero I., Kundu D., Honold S., Wickham H., Topping N.E., Sahoo D.K., et al. Establishment and characterization of turtle liver organoids provides a potential model to decode their unique adaptations. Commun. Biol. 2024;7:218. doi: 10.1038/s42003-024-05818-1. PubMed DOI PMC
Díaz-Regañón D., Gabriel V., Livania V., Liu D., Ahmed B.H., Lincoln A., Wickham H., Ralston A., Merodio M.M., Sahoo D.K., et al. Changes of Enterocyte Morphology and Enterocyte: Goblet Cell Ratios in Dogs with Protein-Losing and Non-Protein-Losing Chronic Enteropathies. Vet. Sci. 2023;10:417. doi: 10.3390/vetsci10070417. PubMed DOI PMC
Thompson F.M., Catto-Smith A.G., Moore D., Davidson G., Cummins A.G. Epithelial growth of the small intestine in human infants. J. Pediatr. Gastroenterol. Nutr. 1998;26:506–512. doi: 10.1097/00005176-199805000-00004. PubMed DOI
Adeniyi-Ipadeola G.O., Hankins J.D., Kambal A., Zeng X.-L., Patil K., Poplaski V., Bomidi C., Nguyen-Phuc H., Grimm S.L., Coarfa C., et al. Infant and adult human intestinal enteroids are morphologically and functionally distinct. mBio. 2024;15:e0131624. doi: 10.1128/mbio.01316-24. PubMed DOI PMC
Pratscher B., Kuropka B., Csukovich G., Doulidis P.G., Spirk K., Kramer N., Freund P., Rodríguez-Rojas A., Burgener I.A. Traces of Canine Inflammatory Bowel Disease Reflected by Intestinal Organoids. Int. J. Mol. Sci. 2024;25:576. doi: 10.3390/ijms25010576. PubMed DOI PMC
Kopper J.J., Iennarella-Servantez C., Jergens A.E., Sahoo D.K., Guillot E., Bourgois-Mochel A., Martinez M.N., Allenspach K., Mochel J.P. Harnessing the Biology of Canine Intestinal Organoids to Heighten Understanding of Inflammatory Bowel Disease Pathogenesis and Accelerate Drug Discovery: A One Health Approach. Front. Toxicol. 2021;3:773953. doi: 10.3389/ftox.2021.773953. PubMed DOI PMC
Wang Q., Guo F., Jin Y., Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct. Target. Ther. 2022;7:336. doi: 10.1038/s41392-022-01194-6. PubMed DOI PMC
Irvine J.D., Takahashi L., Lockhart K., Cheong J., Tolan J.W., Selick H., Grove J. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 1999;88:28–33. doi: 10.1021/js9803205. PubMed DOI
Cereijido M., Robbins E., Dolan W., Rotunno C., Sabatini D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 1978;77:853–880. doi: 10.1083/jcb.77.3.853. PubMed DOI PMC
van Breemen R.B., Li Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol. 2005;1:175–185. doi: 10.1517/17425255.1.2.175. PubMed DOI
Artursson P. Cell cultures as models for drug absorption across the intestinal mucosa. Crit. Rev. Ther. Drug Carr. Syst. 1991;8:305–330. PubMed
Hilgendorf C., Spahn-Langguth H., Regårdh C.G., Lipka E., Amidon G.L., Langguth P. Caco-2 versus Caco-2/HT29-MTX Co-cultured Cell Lines: Permeabilities Via Diffusion, Inside- and Outside-Directed Carrier-Mediated Transport. J. Pharm. Sci. 2000;89:63–75. doi: 10.1002/(SICI)1520-6017(200001)89:1<63::AID-JPS7>3.0.CO;2-6. PubMed DOI
VanDussen K.L., Sonnek N.M., Stappenbeck T.S. L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams. Stem Cell Res. 2019;37:101430. doi: 10.1016/j.scr.2019.101430. PubMed DOI PMC
Penning L.C., Boom R. Companion animal organoid technology to advance veterinary regenerative medicine. Front. Vet. Sci. 2023;10:1032835. doi: 10.3389/fvets.2023.1032835. PubMed DOI PMC
Massaro A., Novoa C.V., Wang Y., Allbritton N.L. Fibroblasts modulate epithelial cell behavior within the proliferative niche and differentiated cell zone within a human colonic crypt model. Front. Bioeng. Biotechnol. 2024;12:1506976. doi: 10.3389/fbioe.2024.1506976. PubMed DOI PMC
Sahoo D.K., Martinez M.N., Dao K., Gabriel V., Zdyrski C., Jergens A.E., Atherly T., Iennarella-Servantez C.A., Burns L.E., Schrunk D., et al. Canine Intestinal Organoids as a Novel In Vitro Model of Intestinal Drug Permeability: A Proof-of-Concept Study. Cells. 2023;12:1269. doi: 10.3390/cells12091269. PubMed DOI PMC