Interannual differences in pollinator contributions to pollen transfer are mainly driven by changes in pollinator abundance
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40241841
PubMed Central
PMC12000867
DOI
10.1093/aobpla/plaf009
PII: plaf009
Knihovny.cz E-zdroje
- Klíčová slova
- conspecific pollen, pollen load, pollen transfer, pollination, pollinator abundance, pollinators,
- Publikační typ
- časopisecké články MeSH
With the rising threat to insect pollinators and the upcoming pollinator crisis, it is important to know how pollinators contribute to pollen transfer. The contributions of individual pollinator taxa to pollen transfer depend both on their abundance and on how much pollen each individual can carry, with overall importance being a multiplication of these two values. Here, we quantified pollen load across a diverse spectrum of insect pollinator taxa and variation in their abundance over 11 years. We found that, while variation in pollen load was relatively small among pollinator taxa (compared to relatively high variability among individuals within each insect taxon), the visitation levels changed significantly over the years, resulting in a high degree of variation in pollinator contributions to pollen transfer of each insect taxon at the community level. Thus, we conclude that the overall importance of pollinator taxa for pollen transfer is determined further by their abundances than by their taxon-specific capability for carrying various pollen loads. As the insect abundances vary over time and may change dramatically from year to year, our results highlight the importance of diverse and species-rich pollinator communities, as the population decline of one pollinator can be buffered by an increase in another pollinator taxa.
Department of Botany Faculty of Science Charles University Benátská 2 128 41 Prague Czech Republic
Department of Zoology Faculty of Science Charles University Viničná 7 128 41 Prague Czech Republic
Rovná 1333 Sulice 25168 Czech Republic
Správa Národního parku Podyjí Na Vyhlídce 5 669 02 Znojmo Czech Republic
Svatý Jan t Krsovice 1 285 04 Uhlířské Janovice Czech Republic
Zobrazit více v PubMed
Adler LS, Irwin RE.. Comparison of pollen transfer dynamics by multiple floral visitors: experiments with pollen and fluorescent dye. Ann Bot (Lond) 2006;97:141–50. https://doi.org/10.1093/aob/mcj012 PubMed DOI PMC
Aizen MA, Garibaldi LA, Harder LD.. Myth and reality of a global crisis for agricultural pollination. Ecología Austral 2022;32:698–715. https://doi.org/10.25260/ea.22.32.2.1.1875 DOI
Alarcón R. Congruence between visitation and pollen-transport networks in a California plant–pollinator community. Oikos 2010;119:35–44. https://doi.org/10.1111/j.1600-0706.2009.17694.x DOI
Aldercotte AH, Simpson DT, Winfree R.. Crop visitation by wild bees declines over an 8-year time series: a dramatic trend, or just dramatic between-year variation? Insect Conserv Diver 2022;15:522–33. https://doi.org/10.1111/icad.12589 DOI
Bain JA, Dickson RG, Gruver AM. et al. Removing flowers of a generalist plant changes pollinator visitation, composition, and interaction network structure. Ecosphere 2022;13:e4154. https://doi.org/10.1002/ecs2.4154 DOI
Ballantyne G, Baldock KCR, Willmer PG.. Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community. Proc Biol Sci 2015;282:20151130. https://doi.org/10.1098/rspb.2015.1130 PubMed DOI PMC
Ballantyne G, Baldock KCR, Rendell L. et al. Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci Rep 2017;7:8389. https://doi.org/10.1038/s41598-017-08798-x PubMed DOI PMC
Bartomeus I, Bosch J, Vilà M.. High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community. Ann Bot (Lond) 2008;102:417–24. https://doi.org/10.1093/aob/mcn109 PubMed DOI PMC
Beattie AJ. A technique for the study of insect-borne pollen. Pan-Pac Entomol 1971;47:82. https://digitalcommons.usu.edu/bee_lab_ba/8
Boggs CL. The fingerprints of global climate change on insect populations. Curr Opin Insect Sci 2016;17:69–73. https://doi.org/10.1016/j.cois.2016.07.004 PubMed DOI
Bosch J, Martín González AM, Rodrigo A. et al. Plant–pollinator networks: adding the pollinator’s perspective. Ecol Lett 2009;12:409–19. https://doi.org/10.1111/j.1461-0248.2009.01296.x PubMed DOI
CaraDonna PJ, Petry WK, Brennan RM. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol Lett 2017;20:385–94. https://doi.org/10.1111/ele.12740 PubMed DOI
Chittka L, Gumbert A, Kunze J.. Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behav Ecol 1997;8:239–49. https://doi.org/10.1093/beheco/8.3.239 DOI
Crawley MJ. The R Book. Chichester, UK: John Wiley & Sons, Ltd, 2007.
Cruden RW. Pollen grains: why so many? In Pollen and Pollination. Vienna, Austria: Springer, 2000, 143–65. https://doi.org/10.1007/978-3-7091-6306-1_8 DOI
Cullen N, Xia J, Wei N. et al. Diversity and composition of pollen loads carried by pollinators are primarily driven by insect traits, not floral community characteristics. Oecologia 2021;196:131–43. https://doi.org/10.1007/s00442-021-04911-0 PubMed DOI
De Manincor N, Hautekèete N, Mazoyer C. et al. How biased is our perception of plant–pollinator networks? A comparison of visit-and pollen-based representations of the same networks. Acta Oecol 2020;105:103551. https://doi.org/10.1016/j.actao.2020.103551 DOI
DuPont YL, Padrón B, Olesen JM. et al. Spatio-temporal variation in the structure of pollination networks. Oikos 2009;118:1261–9. https://doi.org/10.1111/j.1600-0706.2009.17594.x DOI
Escaravage N, Wagner J.. Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population. Plant Biol (Stuttg) 2004;6:606–15. https://doi.org/10.1055/s-2004-821143 PubMed DOI
Fang Q, Gao J, Armbruster WS. et al. Multi-year stigmatic pollen-load sampling reveals temporal stability in interspecific pollination of flowers in a subalpine meadow. Oikos 2019;128:1739–47. https://doi.org/10.1111/oik.06447 DOI
Fang Q, Zhang T, Fang Z. et al. The impacts of interannual climate variation on pollination network structure of a sub-alpine meadow: from 2008 to 2021. Alp Bot 2024;134:183–92. https://doi.org/10.1007/s00035-024-00307-x DOI
Földesi R, Howlett BG, Grass I. et al. Larger pollinators deposit more pollen on stigmas across multiple plant species—a meta-analysis. J Appl Ecol 2021;58:699–707. https://doi.org/10.1111/1365-2664.13798 DOI
Forrest JRK. Plant–pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 2015;124:4–13. https://doi.org/10.1111/oik.01386 DOI
Frachon L, Arrigo L, Rusman Q. et al. Putative signals of generalist plant species adaptation to local pollinator communities and abiotic factors. Mol Biol Evol 2023;40:msad036. https://doi.org/10.1093/molbev/msad036 PubMed DOI PMC
Gong YB, Huang SQ.. Interspecific variation in pollen-ovule ratio is negatively correlated with pollen transfer efficiency in a natural community. Plant Biol (Stuttg) 2014;16:843–7. https://doi.org/10.1111/plb.12151 PubMed DOI
Gordon A-W, Bernhardt P, Bitner R. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Ecol 1998;12:8–17. http://www.jstor.org/stable/2387457
Grüter C, Moore H, Firmin N. et al. Flower constancy in honeybee workers (Apis mellifera) depends on ecologically realistic rewards. J Exp Biol 2011;214:1397–402. https://doi.org/10.1242/jeb.050583 PubMed DOI
Guzman A, Gaines-Day HR, Lois AN. et al. Surrounding landscape and spatial arrangement of honey bee hives affect pollen foraging and yield in cranberry. Agr Ecosyst Environ 2019;286:106624. https://doi.org/10.1016/j.agee.2019.106624 DOI
Hallmann CA, Sorg M, Jongejans E. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 2017;12:e0185809. https://doi.org/10.1371/journal.pone.0185809 PubMed DOI PMC
Hallmann CA, Ssymank A, Sorg M. et al. Insect biomass decline scaled to species diversity: general patterns derived from a hoverfly community. Proc Natl Acad Sci USA 2021;118:e2002554117. https://doi.org/10.1073/pnas.2002554117 PubMed DOI PMC
Haslett JR. Adult feeding by holometabolous insects: pollen and nectar as complementary nutrient sources for Rhingia campestris (Diptera: Syrphidae). Oecologia 1989;81:361–3. https://doi.org/10.1007/BF00377084 PubMed DOI
Heinrich B. ‘Majoring’ and ‘minoring’ by foraging bumblebees, Bombus vagans: an experimental analysis. Ecology 1979;60:245–55. https://doi.org/10.2307/1937652 DOI
Herrera CM. Components of pollinator ‘quality’: comparative analysis of a diverse insect assemblage. Oikos 1987;50:79–90. https://doi.org/10.2307/3565403 DOI
Herrera CM. Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biol J Linn Soc 1988;35:95–125. https://doi.org/10.1111/j.1095-8312.1988.tb00461.x DOI
Herrera CM. Complex long-term dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades. Ecol Monogr 2019;89:e01338. https://doi.org/10.1002/ecm.1338 DOI
Hill PSM, Wells PH, Wells H.. Spontaneous flower constancy and learning in honey bees as a function of colour. Anim Behav 1997;54:615–27. https://doi.org/10.1006/anbe.1996.0467 PubMed DOI
Horsburgh M, Semple JC, Kevan P.. Relative pollinator effectiveness of insect floral visitors to two sympatric species of wild aster: Symphyotrichum lanceolatum (Willd.) Nesom and S. lateriflorum (L.) Löve & Löve (Asteraceae: Astereae). Rhodora 2011;113:64–86. https://doi.org/10.3119/08-09.1 DOI
Janovský Z, Mikát M, Hadrava J. et al. Conspecific and heterospecific plant densities at small-scale can drive plant–pollinator interactions. PLoS One 2013;8:e77361. https://doi.org/10.1371/journal.pone.0077361 PubMed DOI PMC
Kandori I. Diverse visitors with various pollinator importance and temporal change in the important pollinators of Geranium thunbergii (Geraniaceae). Ecol Res 2002;17:283–94. https://doi.org/10.1046/j.1440-1703.2002.00488.x DOI
Kaplan Z, Danihelka J, Chrtek J. et al.. (eds) 2019. Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Praha, Czech Republic: Academia.
King C, Ballantyne G, Willmer PG.. Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 2013;4:811–8. https://doi.org/10.1111/2041-210x.12074 DOI
Koch L, Lunau K, Wester P.. To be on the safe site—ungroomed spots on the bee’s body and their importance for pollination. PLoS One 2017;12:e0182522. https://doi.org/10.1371/journal.pone.0182522 PubMed DOI PMC
Larsson M. Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialized Knautia arvensis (Dipsacaceae). Oecologia 2005;146:394–403. https://doi.org/10.1007/s00442-005-0217-y PubMed DOI
Lázaro A, Nielsen A, Totland O. et al. Factors related to the inter-annual variation in plants’ pollination generalization levels within a community. Oikos 2010;119:825–34. https://doi.org/10.1111/j.1600-0706.2009.18017.x DOI
Mahy G, Sloover JD, Jacquemart A-L.. The generalist pollination system and reproductive success of Calluna vulgaris in the Upper Ardenne. Can J Bot 1998;76:1843–51. https://doi.org/10.1139/b98-133 DOI
Minnaar C, Anderson B, De Jager ML. et al. Plant–pollinator interactions along the pathway to paternity. Ann Bot (Lond) 2019;123:225–45. https://doi.org/10.1093/aob/mcy167 PubMed DOI PMC
Moravec V, Markonis Y, Rakovec O. et al. Europe under multi-year droughts: how severe was the 2014–2018 drought period? Environ Res Lett 2021;16:034062. https://doi.org/10.1088/1748-9326/abe828 DOI
Ne’eman G, Jürgens A, Newstrom-Lloyd L. et al. A framework for comparing pollinator performance: effectiveness and efficiency. Biol Rev Camb Philos Soc 2010;85:435–51. https://doi.org/10.1111/j.1469-185X.2009.00108.x PubMed DOI
Ohashi K, Jürgens A, Thomson JD.. Trade-off mitigation: a conceptual framework for understanding floral adaptation in multispecies interactions. Biol Rev Camb Philos Soc 2021;96:2258–80. https://doi.org/10.1111/brv.12754 PubMed DOI PMC
Ollerton J. Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst 2017;48:353–76. https://doi.org/10.1146/annurev-ecolsys-110316-022919 DOI
Ollerton J, Winfree R, Tarrant S.. How many flowering plants are pollinated by animals? Oikos 2011;120:321–6. https://doi.org/10.1111/j.1600-0706.2010.18644.x DOI
Orford KA, Vaughan IP, Memmott J.. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc Biol Sci 2015;282:20142934. https://doi.org/10.1098/rspb.2014.2934 PubMed DOI PMC
Parker AJ, Williams NM, Thomson JD. et al. Specialist pollinators deplete pollen in the spring ephemeral wildflower Claytonia virginica. Ecol Evol 2016;6:5169–77. https://doi.org/10.1002/ece3.2252 PubMed DOI PMC
Phillips BB, Williams A, Osborne JL. et al. Shared traits make flies and bees effective pollinators of oilseed rape (Brassica napus L.). Basic Appl Ecol 2018;32:66–76. https://doi.org/10.1016/j.baae.2018.06.004 DOI
Popic TJ, Wardle GM, Davila YC.. Flower-visitor networks only partially predict the function of pollen transport by bees. Austral Ecol 2013;38:76–86. https://doi.org/10.1111/j.1442-9993.2012.02377.x DOI
Price MV, Waser NM, Irwin RE. et al. Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 2005;86:2106–16. https://doi.org/10.1890/04-1274 DOI
Rader R, Edwards W, Westcott DA. et al. Pollen transport differs among bees and flies in a human-modified landscape. Divers Distrib 2011;17:519–29. https://doi.org/10.1111/j.1472-4642.2011.00757.x DOI
Rader R, Bartomeus I, Garibaldi LA. et al. Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci USA 2016;113:146–51. https://doi.org/10.1073/pnas.1517092112 PubMed DOI PMC
Rammell NF, Gillespie SD, Elle E.. Visiting insect behaviour and pollen transport for a generalist oak-savannah wildflower, Camassia quamash (Asparagaceae). Can Entomol 2019;151:58–68. https://doi.org/10.4039/tce.2018.58 DOI
Ribas-Marquès E, Díaz-Calafat J, Boi M.. The role of adult noctuid moths (Lepidoptera: Noctuidae) and their food plants in a nocturnal pollen-transport network on a Mediterranean island. J Insect Conserv 2022;26:243–55. https://doi.org/10.1007/s10841-022-00382-7 DOI
Roquer-Beni L, Rodrigo A, Arnan X. et al. A novel method to measure hairiness in bees and other insect pollinators. Ecol Evol 2020;10:2979–90. https://doi.org/10.1002/ece3.6112 PubMed DOI PMC
Sahli HF, Conner JK.. Visitation, effectiveness, and efficiency of 15 genera of visitors to wild radish, Raphanus raphanistrum (Brassicaceae). Am J Bot 2007;94:203–9. https://doi.org/10.3732/ajb.94.2.203 PubMed DOI
Sánchez-Bayo F, Wyckhuys KAG.. Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 2019;232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020 DOI
Souza CS, Maruyama PK, Santos KC. et al. Plant‐centered sampling estimates higher beta diversity of interactions than pollinator‐based sampling across habitats. New Phytol 2021;230:2501–12. https://doi.org/10.1111/nph.17334 PubMed DOI
Stang M, Klinkhamer PGL, Waser NM. et al. Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann Bot (Lond) 2009;103:1459–69. https://doi.org/10.1093/aob/mcp027 PubMed DOI PMC
Stavert JR, Liñán-Cembrano G, Beggs JR. et al. Hairiness: the missing link between pollinators and pollination. PeerJ 2016;4:e2779. https://doi.org/10.7717/peerj.2779 PubMed DOI PMC
Thompson JD. How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system? Oecologia 2001;126:386–94. https://doi.org/10.1007/s004420000531 PubMed DOI
Thomson DM. Effects of long-term variation in pollinator abundance and diversity on reproduction of a generalist plant. J Ecol 2019;107:491–502. https://doi.org/10.1111/1365-2745.13055 DOI
Thomson JD, Goodell K.. Pollen removal and deposition by honeybee and bumblebee visitors to apple and almond flowers. J Appl Ecol 2001;38:1032–44. https://doi.org/10.1046/j.1365-2664.2001.00657.x. https://www.jstor.org/stable/827241 DOI
Tourbez C, Gómez‐Martínez C, González‐Estévez M. et al. Pollen analysis reveals the effects of uncovered interactions, pollen‐carrying structures, and pollinator sex on the structure of wild bee-plant networks. Insect Sci 2024;31:971–88. https://doi.org/10.1111/1744-7917.13267 PubMed DOI
Vázquez DP, Morris WF, Jordano P.. Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 2005;8:1088–94. https://doi.org/10.1111/j.1461-0248.2005.00810.x DOI
Walton RE, Sayer CD, Bennion H. et al. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biol Lett 2020;16:20190877. https://doi.org/10.1098/rsbl.2019.0877 PubMed DOI PMC
Waser NM. Flower constancy: definition, cause, and measurement. Am Naturalist 1986;127:593–603. https://doi.org/10.1086/284507 DOI
Waser NM, Chittka L, Price MV. et al. Generalization in pollination systems, and why it matters. Ecology 1996;77:1043–60. https://doi.org/10.2307/2265575 DOI
Willmer P, Finlayson K.. Big bees do a better job: intraspecific size variation influences pollination effectiveness. J Pollinat Ecol 2014;14:244–54. https://doi.org/10.26786/1920-7603(2014)22 DOI
Willmer PG, Cunnold H, Ballantyne G.. Insights from measuring pollen deposition: quantifying the pre-eminence of bees as flower visitors and effective pollinators. Arthropod Plant Interact 2017;11:411–25. https://doi.org/10.1007/s11829-017-9528-2 DOI
figshare
10.6084/m9.figshare.27933357.v1