Impact of prey species, host plant, and predator sex on the functional response of Orius strigicollis

. 2025 May 06 ; 15 (1) : 15808. [epub] 20250506

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40328799
Odkazy

PubMed 40328799
PubMed Central PMC12055989
DOI 10.1038/s41598-025-00567-5
PII: 10.1038/s41598-025-00567-5
Knihovny.cz E-zdroje

Tetranychus ludeni and Frankliniella intonsa are voracious and economically important pests of crops. Orius strigicollis is a promising biocontrol agent for managing these pests, but effective integrated pest management (IPM) requires understanding factors that influence its predation efficiency. To investigate the impact of prey species, host plant, and predator sex, we measured trichome length and density on eggplant and bean leaves and assessed body dimensions and mobility of both predator and prey. Functional response analysis, Pearson's correlation, and principal component analysis (PCA) were employed to determine the extent to which these factors affected handling time and attack rate under varying conditions. O. strigicollis consistently exhibited a Type II functional response when fed on both of thrip larvae and spider mites on eggplant and runner bean. Trichome length and density on leaves positively influenced predation by impeding mite movement, while deutonymphs of T. ludeni with minute body dimensions were more efficiently predated than 2nd instars of F. intonsa. Female predators demonstrated superior foraging performance compared to males, despite no observed differences in body size or mobility. These findings provide actionable insights for crop breeding and IPM strategies, and further field studies are recommended to validate these effects under varying environmental conditions.

Zobrazit více v PubMed

Ristyadi, D., He, X. Z. & Wang, Q. Response to thermal environment in Tetranychus ludeni (Acari: Tetranychidae). Syst. Appl. Acarol.26, 942–953. 10.11158/saa.26.5.9 (2021).

Gotoh, T., Moriya, D. & Nachman, G. Development and reproduction of five Tetranychus species (Acari: Tetranychidae): Do they all have the potential to become major pests?. Exp. Appl. Acarol.66, 453–479. 10.1007/s10493-015-9919-y (2015). PubMed

Zhou, P., He, X. Z., Chen, C. & Wang, Q. Age and density of mated females affect dispersal strategies in spider mite Tetranychus ludeni Zacher. Insects15, 387. 10.3390/insects15060387 (2024). PubMed PMC

Zhang, Q. et al. Functional response and control potential of Orius sauteri (Hemiptera: Anthocoridae) on tea thrips (Dendrothrips minowai Priesner). Insects12, 1132. 10.3390/insects12121132 (2021). PubMed PMC

Kaimal, S. G. & Ramani, N. Feeding biology of Tetranychus ludeni Zacher (Acari: Tetranychidae) on velvet bean. Syst. Appl. Acarol.16, 228–234. 10.11158/saa.16.3.7 (2011).

Rajagopalan, K. First record of spider mite Tetranychus ludeni Zacher transmitting dolichos enation mosaic virus. Curr. Sci.43, 488–489 (1974).

Wang, C. L., Lin, F. C., Chiu, Y. C. & Shih, H. T. Species of Frankliniella Trybom (Thysanoptera: Thripidae) from the Asian-Pacific Area. Zool. Stud.49, 824–848 (2010).

Okazaki, S. & Sakurai, T. Efficiencies of transmission of Tomato spotted wilt virus by Frankliniella occidentalis and Frankliniella intonsa collected in green bell pepper fields in Oita Prefecture. Kyushu Plant Prot. Res.51, 60–63 (2005).

Okuda, S., Okuda, M., Matsuura, S., Okazaki, S. & Iwai, H. Competence of Frankliniella occidentalis and Frankliniella intonsa strains as vectors for Chrysanthemum stem necrosis virus. Eur. J. Plant Pathol.136, 355–362. 10.1007/s10658-013-0169-8 (2013).

Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci.14, 206–210. 10.1038/s41561-021-00712-5 (2021).

Pan, D. et al. Sublethal and transgenerational effects of pyridaben exposure on the fitness and gene expression of Panonychus citri. Pest Manag. Sci.79, 3250–3261. 10.1002/ps.7506 (2023). PubMed

Sun, Y. et al. Insecticide-mediated changes in the population and toxicity of the thrips species, Frankliniella occidentalis (Pergande) and Thrips flavus (Schrank)(Thysanoptera: Thripidae). J. Econ. Entomol.117, 293–301. 10.1093/jee/toad226 (2024). PubMed

Lester, P., Thistlewood, H. & Harmsen, R. Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol.24, 19–33. 10.1023/A:1006345119387 (2000). PubMed

Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol.60, 621–645. 10.1146/annurev-ento-010814-021005 (2015). PubMed

Tuan, S. J., Lin, Y. H., Peng, S. C. & Lai, W. H. Predatory efficacy of Orius strigicollis (Hemiptera: Anthocoridae) against Tetranychus urticae (Acarina: Tetranychidae) on strawberry. J. Asia. Pac. Entomol.19, 109–114. 10.1016/j.aspen.2015.12.007 (2016).

Tuan, S. J. et al. Comparison of demographic parameters and predation rates of Orius strigicollis (Hemiptera: Anthocoridae) fed on eggs of Tetranychus urticae (Acari: Tetranychidae) and Cadra cautella (Lepidoptera: Pyralidae). J. Econ. Entomol.109, 1529–1538. 10.1093/jee/tow099 (2016). PubMed

Wang, C. L. Two predacious Orius flower bugs (Hemiptera: Anthocoridae) in Taiwan. Chin. J. Entomol.18, 199–202 (1998).

Gholami, N., Aleosfoor, M., Hosseini, M. & Fekrat, L. Predation functional response and demographic parameters of Orius albidipennis (Hemiptera: Anthocoridae) on Schizaphis graminum (Hemiptera: Aphididae): effect of host plant morphological attributes. Biocontrol Sci. Technol.32, 362–380. 10.1080/09583157.2021.2009771 (2022).

Aljbory, Z. & Chen, M. S. Indirect plant defense against insect herbivores: a review. Insect Sci.25, 2–23. 10.1111/1744-7917.12436 (2018). PubMed

Rahman, M., Islam, W. & Ahmed, K. Functional response of the predator Xylocoris flavipes to three stored product insect pests. Int. J. Agric. Biol.11, 316–320 (2009).

Shahpouri, A., Yarahmadi, F. & Zandi Sohani, N. Functional response of the predatory species Orius albidipennis Reuter (Hemiptera: Anthocoridae) to two life stages of Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Egypt. J. Biol. Pest Control29, 14. 10.1186/s41938-019-0119-7 (2019).

Rashedi, A., Rajabpour, A., Sohani, N. Z. & Rasekh, A. Prey stage preference and functional response of Orius albidipennis (Hetetroptera, Anthocoridae) to Aphis fabae (Homomoptera, Aphididae). Int. J. Trop. Insect Sci.40, 13–19. 10.1007/s42690-019-00045-2 (2020).

Rosenbaum, B., Li, J., Hirt, M. R., Ryser, R. & Brose, U. Towards understanding interactions in a complex world: Design and analysis of multi-species functional response experiments. Methods Ecol. Evol.15, 1704–1719. 10.1111/2041-210X.14372 (2024).

Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol.91, 385–398. 10.4039/Ent91385-7 (1959).

Holling, C. S. The functional response of invertebrate predators to prey density. Mem. Ent. Soc. Can.98, 5–86. 10.4039/entm9848fv (1966).

Rogers, D. Random search and insect population models. J. Anim. Ecol.10.2307/3474 (1972).

De Clercq, P., Mohaghegh, J. & Tirry, L. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biol. Control18, 65–70. 10.1006/bcon.1999.0808 (2000).

Mohaghegh, Clercq. Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hübner) (Lep., Noctuidae): effect of temperature. J. Appl. Entomol.125, 131–134. 10.1046/j.1439-0418.2001.00519.x (2001).

El-Basha, N. A., Salman, M. & Osman, M. A. Functional response of Orius albidipennis (Hemiptera: Anthocoridae) to the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). J. Entomol.9, 248–256. 10.3923/je.2012.248.256 (2012).

Jalalizand, A., Karimy, A., Ashouri, A., Hosseini, M. & Golparvar, A. R. Effect of host plant morphological features on functional response of Orius albidipennis (Hemiptera: Anthocoridae) to Tetranychus urticae (Acari: Tetranychidae). Res. Crops13, 378–384 (2012).

Xing, Z. et al. Efficiency of trichome-based plant defense in Phaseolus vulgaris depends on insect behavior, plant ontogeny, and structure. Front. Plant Sci.8, 2006. 10.3389/fpls.2017.02006 (2017). PubMed PMC

Saska, P. et al. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest Sci.94, 423–434. 10.1007/s10340-020-01253-3 (2021).

Vasquez, A. R., Kaur, I. & Kariyat, R. Why are some plants hairy?. Front. Young Minds10.3389/frym.2022.739393 (2022).

Sato, M. M., de Moraes, G. J., Haddad, M. L. & Wekesa, V. W. Effect of trichomes on the predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus macropilis (Acari: Phytoseiidae) on tomato, and the interference of webbing. Exp. Appl. Acarol.54, 21–32. 10.1007/s10493-011-9426-8 (2011). PubMed

Hassanpour, M., Nouri-Ganbalani, G., Mohaghegh, J. & Enkegaard, A. Functional response of different larval instars of the green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), to the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). J. Agric. Food Environ.7, 424–428 (2009).

Ball, S., Woodcock, B., Potts, S. G. & Heard, M. Size matters: body size determines functional responses of ground beetle interactions. Basic Appl. Ecol.16, 621–628. 10.1016/j.baae.2015.06.001 (2015).

Ali, S. et al. Using a two-sex life table tool to calculate the fitness of Orius strigicollis as a predator of Pectinophora gossypiella. Insects11, 275. 10.3390/insects11050275 (2020). PubMed PMC

Pineda, S. et al. Predation by Engytatus varians (Distant) (Hemiptera: Miridae) on Bactericera cockerelli (Sulcer) (Hemiptera: Triozidae) and two Spodoptera species. Bull. Entom. Res.110, 270–277. 10.1017/S0007485319000579 (2020). PubMed

Liu, P. et al. Predation functional response and life table parameters of Orius sauteri (Hemiptera: Anthocoridae) feeding on Megalurothrips usitatus (Thysanoptera: Thripidae). Fla. Entomol.101, 254–259. 10.1653/024.101.0216 (2018).

Nakashima, Y. & Hirose, Y. Sex differences in foraging behaviour and oviposition site preference in an insect predator. Orius sauteri. Entomol. Exp. Appl.106, 79–86. 10.1046/j.1570-7458.2003.00002.x (2003).

Economou, L. P., Lykouressis, D. P. & Barbetaki, A. E. Time allocation of activities of two heteropteran predators on the leaves of three tomato cultivars with variable glandular trichome density. Environ. Entomol.35, 387–393. 10.1603/0046-225X-35.2.387 (2006).

Perdikis, D. C., Lykouressis, D. & Economou, L. Influence of light-dark phase, host plant, temperature, and their interactions on the predation rate in an insect predator. Environ. Entomol.33, 1137–1144. 10.1603/0046-225X-33.5.1137 (2004).

Weissflog, A., Markesteijn, L., Aiello, A., Healey, J. & Geipel, I. Do prey shape, time of day, and plant trichomes affect the predation rate on plasticine prey in tropical rainforests?. Biotropica54, 1259–1269. 10.1111/btp.13150 (2022).

Juliano, S. A. Design and Analysis of Ecological Experiments (Chapman and Hall, 2001).

Okuyama, T. On selection of functional response models: Holling’s models and more. Biocontrol58, 293–298. 10.1007/s10526-012-9492-9 (2013).

Pritchard, D. W., Paterson, R. A., Bovy, H. C. & Barrios-O’Neill, D. Frair: an R package for fitting and comparing consumer functional responses. Methods Ecol. Evol.8, 1528–1534. 10.1111/2041-210X.12784 (2017).

Pritchard, D. frair: Tools for Functional Response Analysis. R package version 0.5.100. (2017).

Bolker, B. M. Ecological Models and Data in R (Princeton University Press, 2008).

Benhadi-Marín, J., Pereira, J. A., Barreales, D., Sousa, J. P. & Santos, S. A. A simulation-based method to compare the pest suppression potential of predators: A case study with spiders. Biol. Control123, 87–96. 10.1016/j.biocontrol.2018.05.007 (2018).

Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7.2. (2023).

Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.6. (2022).

Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage publications, 2018).

R: A language and environment for statistical computing (R foundation for statistical computing, Vienna, Austria, 2023).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Kassambara, A. ggcorrplot: Visualization of a correlation matrix using ‘ggplot2’. R package version 0.1.4.1. (2023).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...