Safety and efficacy of antigen-specific therapeutic approaches for multiple sclerosis: Systematic review

. 2025 ; 20 (5) : e0320814. [epub] 20250519

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid40388453

INTRODUCTION: The objective of this systematic review is to evaluate the efficacy and safety of antigen-specific tolerance-inducing therapeutic approaches (products based on peptides, DNA and T cells) versus placebo or other comparators, where possible, in adult multiple sclerosis (MS) patients. METHODS: PubMed, CINAHL, Web of Science, Cochrane and International Clinical Trials Registry Platform, ClinicalTrials.gov were searched for published and unpublished studies. Screening, critical appraisal, and data extraction for included studies were carried out by two independent reviewers. For efficacy, phase I, II and III clinical trials (randomized/non-randomized; double blind/single blind/unblinded; single-center/multicenter; single-arm/two-arm) and for safety, phase I, II and III clinical trials (randomized/non-randomized; double blind/single blind/unblinded; controlled/uncontrolled; single-center/multicenter; single-arm/two-arm) were included. Observational studies (cross-sectional studies, cohort studies, case studies/reports etc), review articles, systematic reviews, meta-analysis, preclinical and pilot studies were excluded. All included studies were critically appraised using standardized JBI tools, with no exclusions based on methodological quality. Where possible, studies were pooled in statistical meta-analysis, presented in tabular format, and accompanied by narrative synthesis. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach for grading the certainty of evidence. RESULTS: Search yielded 2644 results and in total 26 studies were included in the final analysis. Twelve studies were RCTs and 14 were quasi-experimental. In total, there were 1427 subjects from the RCTs, and 314 from non-RCTs. Sample size of studies ranged from 10 to 612 patients. All studies included adult patients, principally aged 18-55/65 years. Critical appraisal scores for the RCTs were in the range 31% to 92%. For quasi-experimental studies, critical appraisal scores were in the range 45% to 78%. Due to high heterogeneity of the studies, efficacy of all antigen-specific treatment remained ambiguous. For all three types of treatment, there was no statistical difference in occurrence of adverse effects (AEs) between the treatment- and placebo-related AEs (for DNA-based treatment RR was 1.06 (0.94-1.10), p = 0.334; for peptides-base treatments RR was 1.04 (0.90-1.08), p = 0.115; for T-cells-based treatments RR was 1.31 (0.97-1.76), p = 0.08). There were no differences in RR for serious AEs (SAEs) between the treatments either for DNA-based treatment (RR was 0.63 (0.25-1.58), p = 0.322) or peptide-based treatment (RR was 0.86 (0.62-1.19), p = 0.361). There were no reported SAEs for T cell-based treatments, so meta-analysis for these therapies was not performed. The most frequent AEs were local reactions to injection, such as redness, erythema, pain. DISCUSSION: Antigen-specific tolerance-inducing therapeutic approaches appeared to be safe. However, the certainty for these results was very low for SAEs in peptide- and DNA-based therapies, whereas it was low for AEs in DNA- and T cells-based therapies and moderate for AEs in peptide-based therapies. The efficacy of antigen-specific therapies remains ambiguous. Larger, well-designed studies with high level quality are needed to ensure ultimate conclusions. REGISTRATION: The registration number provided following registration of the protocol in PROSPERO is 'CRD42021236776'.

Zobrazit více v PubMed

Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58. doi: 10.1038/nri3871 PubMed DOI

Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al.. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Multiple Sclerosis J. 2020;26(14):1816–21. PubMed PMC

Souza A, Kelleher A, Cooper R, Cooper RA, Iezzoni LI, Collins DM. Multiple sclerosis and mobility-related assistive technology: systematic review of literature. J Rehabil Res Dev. 2010;47(3):213–23. doi: 10.1682/jrrd.2009.07.0096 PubMed DOI

Motl RW, Pilutti LA. The benefits of exercise training in multiple sclerosis. Nat Rev Neurol. 2012;8(9):487–97. doi: 10.1038/nrneurol.2012.136 PubMed DOI

Merkt H, Sadeghi Bahmani D, Calabrese P, Naegelin Y, Gerber M, Pühse U, et al.. Multiple sclerosis: Associations between physical disability and depression are not mediated by self-reported physical activity. Percept Mot Skills. 2017;124(5):974–91. doi: 10.1177/0031512517711851 PubMed DOI

Conradsson D, Ytterberg C, von Koch L, Johansson S. Changes in disability in people with multiple sclerosis: a 10-year prospective study. J Neurol. 2018;265(1):119–26. doi: 10.1007/s00415-017-8676-8 PubMed DOI PMC

Paz-Zulueta M, Parás-Bravo P, Cantarero-Prieto D, Blázquez-Fernández C, Oterino-Durán A. A literature review of cost-of-illness studies on the economic burden of multiple sclerosis. Multiple Sclerosis Related Disord. 2020;43:102162. doi: 10.1016/j.msard.2020.102162 PubMed DOI

Bebo B, Cintina I, LaRocca N, Ritter L, Talente B, Hartung D, et al.. The economic burden of multiple sclerosis in the United States: estimate of direct and indirect costs. Neurology. 2022;98(18):e1810–7. doi: 10.1212/WNL.0000000000200150 PubMed DOI PMC

Ernstsson O, Gyllensten H, Alexanderson K, Tinghög P, Friberg E, Norlund A. Cost of Illness of Multiple Sclerosis - A Systematic Review. PLoS One. 2016;11(7):e0159129. doi: 10.1371/journal.pone.0159129 PubMed DOI PMC

Adelman G, Rane SG, Villa KF. The cost burden of multiple sclerosis in the United States: a systematic review of the literature. J Med Econ. 2013;16(5):639–47. doi: 10.3111/13696998.2013.778268 PubMed DOI

McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007;8(9):913–9. doi: 10.1038/ni1507 PubMed DOI

Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58. doi: 10.1038/nri3871 Epub 2015/08/08; PubMed DOI

Kammona O, Kiparissides C. Recent advances in antigen-specific immunotherapies for the treatment of multiple sclerosis. Brain Sci. 2020;10(6):333. doi: 10.3390/brainsci10060333 PubMed DOI PMC

Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2016;140(3):527–46. doi: 10.1093/brain/aww258 PubMed DOI

Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140(3):527–46. doi: 10.1093/brain/aww258 PubMed DOI

Miller DH, Leary SM. Primary-progressive multiple sclerosis. Lancet Neurol. 2007;6(10):903–12. doi: 10.1016/S1474-4422(07)70243-0 PubMed DOI

Ng HS, Zhu F, Zhao Y, Yao S, Lu X, Ekuma O, et al.. Adverse events associated with disease-modifying drugs for multiple sclerosis: a multiregional population-based study. Neurology. 2024;102(3):e208006. doi: 10.1212/WNL.0000000000208006 PubMed DOI PMC

Lanz TV, Brewer RC, Ho PP, Moon J-S, Jude KM, Fernandez D, et al.. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603(7900):321–7. PubMed PMC

Willekens B, Presas-Rodríguez S, Mansilla M, Derdelinckx J, Lee W-P, Nijs G, et al.. Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open. 2019;9(9):e030309. doi: 10.1136/bmjopen-2019-030309 PubMed DOI PMC

Zamvil SS, Hauser SL. Antigen presentation by B cells in multiple sclerosis. N Engl J Med. 2021;384(4):378–81. doi: 10.1056/NEJMcibr2032177 PubMed DOI PMC

Zubizarreta I, Flórez-Grau G, Vila G, Cabezón R, España C, Andorra M, et al.. Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proc Natl Acad Sci U S A. 2019;116(17):8463–70. PubMed PMC

Bronge M, Högelin KA, Thomas OG, Ruhrmann S, Carvalho-Queiroz C, Nilsson OB, et al.. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. Sci Adv. 2022;8(17):eabn1823. doi: 10.1126/sciadv.abn1823 PubMed DOI PMC

Flórez-Grau G, Zubizarreta I, Cabezón R, Villoslada P, Benitez-Ribas D. Tolerogenic Dendritic Cells as a Promising Antigen-Specific Therapy in the Treatment of Multiple Sclerosis and Neuromyelitis Optica From Preclinical to Clinical Trials. Front Immunol. 2018;9:1169. doi: 10.3389/fimmu.2018.01169 PubMed DOI PMC

Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, et al.. Induction of Antigen-Specific Tolerance in Multiple Sclerosis After Immunization With DNA Encoding Myelin Basic Protein in a Randomized, Placebo-Controlled Phase 1/2 Trial. Arch Neurol. 2007;64(10):1407–15. doi: 10.1001/archneur.64.10.nct70002 PubMed DOI

Garren H, Robinson WH, Krasulová E, Havrdová E, Nadj C, Selmaj K, et al.. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol. 2008;63(5):611–20. doi: 10.1002/ana.21370 PubMed DOI

Walczak A, Siger M, Ciach A, Szczepanik M, Selmaj K. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 2013;70(9):1105–9. doi: 10.1001/jamaneurol.2013.3022 PubMed DOI

Juryńczyk M, Walczak A, Jurewicz A, Jesionek-Kupnicka D, Szczepanik M, Selmaj K. Immune regulation of multiple sclerosis by transdermally applied myelin peptides. Ann Neurol. 2010;68(5):593–601. doi: 10.1002/ana.22219 PubMed DOI

Streeter HB, Rigden R, Martin KF, Scolding NJ, Wraith DC. Preclinical development and first-in-human study of ATX-MS-1467 for immunotherapy of MS. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e93. doi: 10.1212/nxi.0000000000000093 PubMed DOI PMC

Chataway J, Martin K, Barrell K, Sharrack B, Stolt P, Wraith DC, et al.. Effects of ATX-MS-1467 immunotherapy over 16 weeks in relapsing multiple sclerosis. Neurology. 2018;90(11):e955–62. doi: 10.1212/wnl.0000000000005118 PubMed DOI

Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L. Chapter 3: systematic reviews of effectiveness.

Munn Z, Aromataris E, Tufanaru C, Stern C, Porritt K, Farrow J, et al.. The development of software to support multiple systematic review types: the Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information (JBI SUMARI). Int J Evid Based Healthc. 2019;17(1):36–43. doi: 10.1097/XEB.0000000000000152 PubMed DOI

Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 PubMed DOI PMC

Tufanaru C, Munn Z, Stephenson M, Aromataris E. Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int J Evid Based Healthc. 2015;13(3):196–207. doi: 10.1097/xeb.0000000000000065 PubMed DOI

GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University and Evidence Prime Afgo.

Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P, et al.. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature medicine. 2000;6(10):1176-82. PubMed

Freedman M, Bar-Or A, Oger J, Traboulsee A, Patry D, Young C, et al.. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology. 2011;77(16):1551–60. doi: 10.1212/WNL.0b013e318233b240 PubMed DOI

Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Archives of Neurol. 2007;64(10):1407–15. PubMed

Bourdette DN, Edmonds E, Smith C, Bowen J, Guttmann CR, Nagy Z, et al.. A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Multiple Sclerosis Journal. 2005;11(5):552–61. doi: 10.1191/1352458505ms1225oa PubMed DOI

Yadav V, Bourdette DN, Bowen JD, Lynch SG, Mattson D, Preiningerova J, et al.. Recombinant T-Cell Receptor Ligand (RTL) for Treatment of Multiple Sclerosis: A Double-Blind, Placebo-Controlled, Phase 1, Dose-Escalation Study. Autoimmune Dis. 2012;2012:954739. doi: 10.1155/2012/954739 PubMed DOI PMC

Fox E, Wynn D, Cohan S, Rill D, McGuire D, Markowitz C. A randomized clinical trial of autologous T-cell therapy in multiple sclerosis: subset analysis and implications for trial design. Multiple Sclerosis Journal. 2012;18(6):843–52. PubMed

Garren H, Robinson WH, Krasulová E, Havrdová E, Nadj C, Selmaj K, et al.. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol. 2008;63(5):611–20. doi: 10.1002/ana.21370 PubMed DOI

van Noort JM, Bsibsi M, Nacken PJ, Verbeek R, Venneker EH. Therapeutic intervention in multiple sclerosis with alpha B-crystallin: A randomized controlled phase IIa trial. PloS One. 2015;10(11):e0143366. doi: 10.1371/journal.pone.0143366 PubMed DOI PMC

Walczak A, Siger M, Ciach A, Szczepanik M, Selmaj K. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 2013;70(9):1105–9. doi: 10.1001/jamaneurol.2013.3022 PubMed DOI

Warren K, Catz I, Ferenczi L, Krantz M. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol. 2006;13(8):887–95. doi: 10.1111/j.1468-1331.2006.01533.x PubMed DOI

Karussis D, Shor H, Yachnin J, Lanxner N, Amiel M, Baruch K, et al.. T cell vaccination benefits relapsing progressive multiple sclerosis patients: a randomized, double-blind clinical trial. PLoS One. 2012;7(12):e50478. doi: 10.1371/journal.pone.0050478 PubMed DOI PMC

Goodkin DE, Shulman M, Winkelhake J, Waubant E, Andersson P-B, Stewart T, et al.. A phase I trial of solubilized DR2:MBP84-102 (AG284) in multiple sclerosis. Neurology. 2000;54(7):1414–20. doi: 10.1212/wnl.54.7.1414 PubMed DOI

Achiron A, Lavie G, Kishner I, Stern Y, Sarova-Pinhas I, Ben-Aharon T, et al.. T cell vaccination in multiple sclerosis relapsing-remitting nonresponders patients. Clin Immunol. 2004;113(2):155–60. doi: 10.1016/j.clim.2004.06.004 PubMed DOI

Chwojnicki K, Iwaszkiewicz-Grześ D, Jankowska A, Zieliński M, Łowiec P, Gliwiński M, et al.. Administration of CD4+CD25highCD127-FoxP3+ Regulatory T Cells for Relapsing-Remitting Multiple Sclerosis: A Phase 1 Study. BioDrugs. 2021;35:47–60. doi: 10.1007/s40259-020-00462-7 PubMed DOI

Belogurov A, Zakharov K, Lomakin Y, Surkov K, Avtushenko S, Kruglyakov P, et al.. CD206-targeted liposomal myelin basic protein peptides in patients with multiple sclerosis resistant to first-line disease-modifying therapies: a first-in-human, proof-of-concept dose-escalation study. Neurotherapeutics. 2016;13:895–904. PubMed PMC

Loftus B, Newsom B, Montgomery M, Von Gynz-Rekowski K, Riser M, Inman S, et al.. Autologous attenuated T-cell vaccine (Tovaxin®) dose escalation in multiple sclerosis relapsing–remitting and secondary progressive patients nonresponsive to approved immunomodulatory therapies. Clinical Immunology. 2009;131(2):202–15. PubMed

Zhang JZ, Rivera VM, Tejada-Simon MV, Yang D, Hong J, Li S, et al.. T cell vaccination in multiple sclerosis: results of a preliminary study. J Neurol. 2002;249:212–8. PubMed

Bourdette DN, Whitham RH, Chou YK, Morrison WJ, Atherton J, Kenny C, et al.. Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic V beta 5.2 and V beta 6.1 CDR2 peptides. J Immunol. 1994;152(5):2510–9. doi: 10.4049/jimmunol.152.5.2510 PubMed DOI

Pender MP, Csurhes PA, Smith C, Douglas NL, Neller MA, Matthews KK, et al.. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight. 2018;3(22):e124714. doi: 10.1172/jci.insight.124714 PubMed DOI PMC

Bar-Or A, Pender M, Hodgkinson S, Broadley S, Lindsey J, Ioannides Z, et al. Phase I open-label extension and imaging data for ATA188, an allogeneic Epstein-Barr virus-targeted multiple sclerosis immunotherapy. 2021.

Morgan EE, Nardo CJ, Diveley JP, Kunin J, Bartholomew RM, Moss RB, et al.. Vaccination with a CDR2 BV6S2/6S5 peptide in adjuvant induces peptide-specific T-cell responses in patients with multiple sclerosis. J Neurosci Res. 2001;64(3):298–301. doi: 10.1002/jnr.1078 PubMed DOI

Vandenbark AA, Culbertson NE, Bartholomew RM, Huan J, Agotsch M, LaTocha D, et al.. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology. 2008;123(1):66–78. doi: 10.1111/j.1365-2567.2007.02703.x PubMed DOI PMC

Ivanova I, Seledtsov V, Seledtsova G, Mamaev S, Potyemkin A, Seledtsov D, et al.. Induction of antiidiotypic immune response with autologous T-cell vaccine in patients with multiple sclerosis. Bull Exp Biol Med. 2008;146:133–8. PubMed

Hohol MJ, Khoury SJ, Cook SL, Orav EJ, Hafler DA, Weiner HL. Three-year open protocol continuation study of oral tolerization with myelin antigens in multiple sclerosis and design of a phase III pivotal trial. Ann N Y Acad Sci. 1996;778(1):243–50. doi: 10.1111/j.1749-6632.1996.tb21132.x PubMed DOI

Wang J, Liu X, Hong Y, Wang S, Chen P, Gu A, et al.. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma. J Exp Clin Cancer Res. 2017;36(1):1–13. doi: 10.1186/s13046-017-0549-6 PubMed DOI PMC

Willekens B, Wens I, Wouters K, Cras P, Cools N. Safety and immunological proof-of-concept following treatment with tolerance-inducing cell products in patients with autoimmune diseases or receiving organ transplantation: A systematic review and meta-analysis of clinical trials. Autoimmun Rev. 2021;20(8):102873. doi: 10.1016/j.autrev.2021.102873 PubMed DOI

Robinson WH, Steinman L. Epstein-Barr virus and multiple sclerosis. Science. 2022;375(6578):264–5. doi: 10.1126/science.abm7930 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...