• This record comes from PubMed

Estimation of mass and radii for charged compact objects using a modified Chaplygin equation of state in the Buchdahl-I metric

. 2025 ; 20 (5) : e0321111. [epub] 20250520

Language English Country United States Media electronic-ecollection

Document type Journal Article

In this article, a class of static configurations for stellar equilibrium in relativistic charged spheres with anisotropic fluid is studied. The Buchdahl ansatz is employed to solve the Einstein-Maxwell field equations, which govern the behavior of charged, relativistic stellar objects. The matter distribution within the charged sphere is shown to satisfy all the necessary energy conditions, including the hydrostatic equilibrium condition. Several compact objects, such as GW 190814, PSR J0952-0607, PSR J0030+0451, PSR J0740+6620, GW 170817, PSR J1614-2230, PSR J2215+5135, and 4U 1608-52, are discussed to predict their masses and radii. These predictions are crucial for understanding the properties of compact stars, including neutron stars and possibly exotic stars. The physical properties of the charged sphere are examined, including mass, surface redshift, adiabatic index, and the speed of sound. The solutions are presented graphically, illustrating the structure of the stars. The results demonstrate that the maximum density and pressure occur at the center of the star, and these quantities are continuous and well-behaved throughout the star's interior, avoiding singularities. These features offer strong support for the physical viability of the model, suggesting that the Buchdahl ansatz provides a realistic description of compact stars with electric charge and anisotropy.

See more in PubMed

Kuhfittig PK. Some remarks on exact wormhole solutions. arXiv preprint. 2010.

Bicak J. Einstein equations: exact solutions. arXiv. preprint. 2006.

Reissner H. On the self-gravity of the electric field according to Einstein’s theory. Annals Phy. 1916;355(9):106–20.

Nordstrom G. On the energy of the gravitational field in Einstein’s theory. Proc K Ned Akad Wet Ser B Phys Sci. 1918;26:1238–45.

Thirukkanesh S, Ragel FC. Charged analogue of well behaved neutral spheres: an algorithmic approach. Chin Phys C. 2016;40(4):045101. doi: 10.1088/1674-1137/40/4/045101 DOI

Bekenstein JD. Hydrostatic equilibrium and gravitational collapse of relativistic charged fluid balls. Phys Rev. D 1971;4(8):2185.

Deb D, et al.. Anisotropic strange stars in the Einstein–Maxwell spacetime. Eur Phys J C. 2018;78:1–13. doi: 10.1140/epjc/s10052-018-5930-x DOI

Panahi H, et al.. A Gaussian model for anisotropic strange quark stars. Chin Phys Lett. 2016;33(7):072601. doi: 10.1088/0256-307X/33/7/072601 DOI

Rahaman F, et al.. Singularity-free dark energy star. Gen Rel Gravi. 2012;44:107–24.

Varela V, et al.. Charged anisotropic matter with linear or nonlinear equation of state. Phys Rev D. 2010;82(4):044052.

Negreiros RP, et al.. Electrically charged strange quark stars. Phys Rev D. 2009;80(8):083006.

Siffert BB, et al.. Compact charged stars. Braz J Phys. 2007;37:609–12.

Ray S, et al.. Electrically charged compact stars and formation of charged black holes. Phys Rev D. 2003;68(8):084004.

Bonnor WB. The mass of a static charged sphere. J Phys. 1960;160(1):59–65.

Maharaj SD, et al.. A family of Finch and Skea relativistic stars. Int J Mod Phys D. 2017;26(03):1750014.

Murad MH, Fatema S. Some exact relativistic models of electrically charged self-bound stars. Int J Theo Phys. 2013;52:4342–59. doi: 10.1007/s10773-013-1752-7 DOI

Maurya SK, Gupta YK. Charged fluid to anisotropic fluid distribution in general relativity. Astrophys Space Sci. 2013;344:243–51. doi: 10.1007/s10509-012-1302-4 DOI

Neslušan L. On the global electrostatic charge of stars. Astron Astrophys. 2001;372(3):913–5. doi: 10.1051/0004-6361:20010533 DOI

Omukai K, et al.. Formation of the first stars by accretion. Astrophys J. 2003;589(2):677. doi: 10.1086/374810 DOI

Bowers RL, Liang EPT. Anisotropic spheres in general relativity. Astrophys J. 1974;188:657.

Cosenza M, et al.. Some models of anisotropic spheres in general relativity. J Math Phys. 1981;22(1):118–25. doi: 10.1063/1.524742 DOI

Herrera L, et al.. Spherically symmetric dissipative anisotropic fluids: a general study. Phys Rev D. 2004;69(8):084026.

Herrera L, Barreto W. Newtonian polytropes for anisotropic matter: general framework and applications. Phys Rev D. 2013;87(8):087303.

Reddy KP, et al.. Impact of anisotropic stresses during dissipative gravitational collapse. Gen Relativ Gravit. 2015;47:1–25.

Bondi H. The contraction of gravitating spheres. Proc R Soc Lond Math Phys Sci. 1964;281(1384):39-48.

Malaver M, Kasmaei HD. Charged anisotropic matter with modified Chaplygin equation of state. Int J Phys Stud. 2021;3(1):83–90. doi: 10.18689/ijpsr-1000113 DOI

Tello-Ortiz F, et al.. Relativistic anisotropic fluid spheres satisfying a non-linear equation of state. Euro Phys J. C. 2020;80(5):371.

de la Fuente MM, et al.. Buchdahl spacetime with compact body solution of charged fluid and scalar field theory. arXiv preprint. 2022.

Maurya SK, et al.. Singularity-free charged compact star model under f(Q)-gravity regime. Fortschritte Physik. 2024;72(4):2300229.

Maurya SK, et al.. Anisotropic compact star in linear f(Q)-action. Class Quan Gravi. 2024;41(11):115009. doi: 10.1142/S0218271822500535 DOI

Maurya SK, et al.. Study of self-bound compact stars in f(T) gravity and observational constraints on the model parameters. Eur Phys J C. 2024;84(6):603.

Maurya SK, et al.. Complexity-free solution generated by gravitational decoupling for anisotropic self-gravitating star in symmetric teleparallel f(Q)-gravity theory. Eur Phys J C. 2023;83(4):1–18.

Sultana S, et al.. Some versions of Chaplygin gas model in modified gravity framework and validity of generalized second law of thermodynamics. Z Naturforsch. 2024;79(1):51–70. doi: 10.1515/zna-2023-0085 DOI

Malaver M, et al.. A new model for charged anisotropic matter with modified Chaplygin equation of state. Preprint. 2020. doi: 10.20944/preprints202012.0211.v1 DOI

Delgaty MSR, Lake K. Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput Phys Commun. 1998;115(2):395–415.

Prasad AK, et al.. Charged analogues of isotropic compact stars model with Buchdahl metric in general relativity. Astrophys Space Sci. 2021;366:1–14. doi: 10.1007/s10509-021-03931-9 DOI

Buchdahl HA. General relativistic fluid spheres. Phys Rev. 1959;116(4):1027. doi: 10.1103/PhysRev.116.1027 DOI

Tamta P, Fuloria P. Study of anisotropic stellar objects, a revisit to Buchdahl metric potential. Int J Mod Phys D. 2022;31(08):2250057.

Maurya SK, et al.. Anisotropic compact stars in the Buchdahl model: a comprehensive study. Phys Rev D 2019;99(4):044029.

Romani RW, et al.. PSR J0952-0607: the fastest and heaviest known galactic neutron star. Astrophys J Lett. 2022;934(2):L17.

Spergel DN, et al.. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys J Supp. 2003;148(1):175. doi: 10.1086/377335 DOI

Tangphati T, et al.. Constraints on the maximum mass of quark star and the GW 190814 event. Euro Phys J C. 2022;82(1):57. doi: 10.1140/epjc/s10052-022-10024-6 DOI

Miller MC, et al.. PSR J0030+ 0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys J Lett. 2019;887(1):L24.

Cromartie HT, et al.. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat Astron. 2020;4(1):72–6. https://www.nature.com/articles/s41550-019-0880-2

Maurya SK, et al.. Compact stars with dark matter induced anisotropy in complexity-free background and effect of dark matter on GW echoes. Mon Not R Astron Soc. 2024;527(3):5192–205. doi: 10.1093/mnras/stad3562 DOI

Maurya SK, et al.. Modeling compact object mergers GW 190814 and GW 200210 and other self-bound compact stars with dark matter induced by gravitational decoupling and its significance to the mass gap. Astrophys J. 2024;972(2):175.

Maurya SK, et al.. The effect of gravitational decoupling on constraining the mass and radius for the secondary component of GW 190814 and other self-bound strange stars in f(Q) gravity theory. Astrophys J Suppl Ser. 2023;269(2):35.

Maurya SK, et al.. Anisotropic models for compact stars. Eur Phys J C. 2015;75(5):225.

Maurya SK, et al.. Effect of pressure anisotropy on Buchdahl-type relativistic compact stars. Gen Relativ Gravit. 2019;51:1-28.

Maurya SK, et al.. Modeling self-bound binary compact object with a slow rotation effect and effect of electric field gradient on the mass-radius limit and moment of inertia. J High Energy Astrophys. 2024;44:45–59.

Singh KN, et al.. A comparative study of embedding class one, conformally flat, vanishing complexity factor and conformally symmetric solutions and their impacts on compact star structure. J High Energy Astrophys. 2024;42:163–77.

Malaver M, et al.. Some new relativistic charged models with anisotropic pressure. Int J Phys Astron. 2003;7(1):240–9. doi: 10.15406/paij.2023.07.00315 DOI

Bhar P. Study of physical properties of charged compact star model in f(T) gravity. Chin J Phys. 2023;85:600–15. doi: 10.1016/j.cjph.2023.08.005 DOI

Pradhan S, et al.. Geometrically deformed charged anisotropic models in f(Q,T) gravity. Fortschritte Physik. 2024;72(9–10):2400092.

Mardan SA, et al.. Charged anisotropic compact star core-envelope model with polytropic core and linear envelope. Eur Phys J C. 2021;81(10):1–14. doi: 10.1140/epjc/s10052-021-09710-8 DOI

Hu H, et al.. Measuring the Lense–Thirring Orbital Precession and the Neutron Star Moment of Inertia with Pulsars. Universe. 2024;10(4):160. doi: 10.3390/universe10040160 DOI

Benaoum H. Accelerated universe from modified Chaplygin gas and tachyonic fluid. Universe. 2022;8(7):340. doi: 10.3390/universe8070340 DOI

El Hanafy W, et al.. Implications of the conformal constraint on sound speed on the radius of PSR J0952–0607 within rastall gravity. Astrophys J. 2023;951(2):144. doi: 10.3847/1538-4357/acd93c DOI

Miller MC, et al.. The radius of PSR J0740+ 6620 from NICER and XMM-Newton data. Astrophys J Lett. 2021;918(2):L28.

Bauswein A, et al.. Equation-of-state constraints and the QCD phase transition in the era of gravitational-wave astronomy. AIP. Conf. Pro. 2019;2127(1).

Demorest PB, et al.. A two-solar-mass neutron star measured using Shapiro delay. Nature. 2010;467(7319):1081–83. PubMed

Linares M, et al.., Peering into the dark side: Magnesium lines establish a massive neutron star in PSR J2215+ 5135. Astrophys J. 2018;859(1):54.

Güver T, et al.. The distance, mass, and radius of the neutron star in 4U1608–52. Astrophys J. 2010;712(2):964.

Kolassis CA, et al.. Energy conditions for an imperfect fluid. Class Quant Gravi. 1988;5(10):1329.

Hawking SW, Ellis GF. The large scale structure of space-time. Cambridge University Press; 2023.

Wald R. General relativity. University of Chicago Press; 1984.

Brassel BP, et al.. Inhomogeneous and radiating composite fluids. Entropy. 2021;23(11):1400. PubMed PMC

Brassel BP, et al.. Higher-dimensional inhomogeneous composite fluids: energy conditions. Prog Theor Exp Phys. 2021;10:103E01.

Böhmer CG, Harko T. Bounds on the basic physical parameters for anisotropic compact general relativistic objects. Class Quant Gravi. 2006;23(22):6479.

Arias C, et al.. Extra packing of mass of anisotropic interiors induced by MGD. Eur Phys J C. 2020;80:1–9.

Ivanov B. Static charged perfect fluid spheres in general relativity. Phys Rev D. 2002;65(10):104001.

Tolman RC. Static solutions of Einstein’s field equations for spheres of fluid. Phys Rev. 1939;55(4):364.

Oppenheimer JR, Volkoff GM. On massive neutron cores. Phys Rev. 1939;55(4):374.

Grøn Ø. Repulsive gravitation and electron models. Phys Rev D. 1985;31(8):2129. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...