• This record comes from PubMed

Development of an intranasal, universal influenza vaccine in an EU-funded public-private partnership: the FLUniversal consortium

. 2025 ; 16 () : 1568778. [epub] 20250523

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Influenza is a significant global health problem, causing disease and hospitalisations in elderly individuals and infants. While updated vaccines are available every year, their effectiveness is moderate at best. FLUniversal is a European Union funded consortium, aiming to develop a universal influenza vaccine by bringing together partners with expertise in different areas of vaccine development. An intranasal live attenuated vaccine, DeltaFLU, will be produced using an innovative platform; preclinical assessment in animal models and clinical studies using a controlled human infection model (CHIM) will be conducted for assessment of safety, immunogenicity and protective efficacy; and finally, comprehensive immunological analysis of blood and nasal mucosa will elucidate vaccine responses and potential new correlates of protection (CoPs). In addition to a universal influenza vaccine, listed as a top priority by the EU, FLUniversal seeks to deliver an enhanced vaccine manufacturing technology that is superior in terms of efficiency, production costs and production speed - especially critical in the face of a potential new pandemic. Moreover, an influenza CHIM with a focus on harmonisation of clinical procedures and assays will be established to generate translatable and reproducible data. Newly generated knowledge on mechanisms of protection, CoPs and new molecular analysis tools may significantly contribute to our knowledge on influenza infection and influenza vaccines. In conclusion, FLUniversal is an innovative and ambitious public-private partnership, aiming to present a new development pathway for influenza vaccines, and maximising impact by bringing together leading partners from academy and industry with a shared purpose of collaboration and innovation.

See more in PubMed

Cromer D, van Hoek AJ, Jit M, Edmunds WJ, Fleming D, Miller E. The burden of influenza in England by age and clinical risk group: A statistical analysis to inform vaccine policy. J Infect. (2014) 68:363–71. doi: 10.1016/j.jinf.2013.11.013 PubMed DOI

Gaitonde DY. Influenza: diagnosis and treatment. (2019) 100:. PubMed

Gasparini R, Amicizia D, Lai PL, Panatto D. Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly. Hum Vacc Immunother. (2012) 8:21–8. doi: 10.4161/hv.8.1.17622 PubMed DOI

Monto AS. Epidemiology of influenza. Vaccine. (2008) 26:D45–8. doi: 10.1016/j.vaccine.2008.07.066 PubMed DOI

Monto AS, Kioumehr F. The tecumseh study of respiratory illness: IX. Occurrence of influenza in the community, 1966–19711. Am J Epidemiol. (1975) 102:553–63. doi: 10.1093/oxfordjournals.aje.a112193 PubMed DOI

Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, et al. . Selecting and using the appropriate influenza vaccine for each individual. Viruses. (2021) 13:971. doi: 10.3390/v13060971 PubMed DOI PMC

Kim SS, Flannery B, Foppa IM, Chung JR, Nowalk MP, Zimmerman RK, et al. . Effects of prior season vaccination on current season vaccine effectiveness in the United States flu vaccine effectiveness network, 2012–2013 through 2017–2018. Clin Infect Dis. (2021) 73:497–505. doi: 10.1093/cid/ciaa706 PubMed DOI PMC

de Jong JC, Rimmelzwaan GF, Fouchier RAM, Osterhaus ADME. Influenza virus: a master of metamorphosis. J Infect. (2000) 40:218–28. doi: 10.1053/jinf.2000.0652 PubMed DOI

Cowling BJ, Lim WW, Perera RAPM, Fang VJ, Leung GM, Peiris JSM, et al. . Influenza hemagglutination-inhibition antibody titer as a mediator of vaccine-induced protection for influenza B. Clin Infect Dis. (2019) 68:1713–7. doi: 10.1093/cid/ciy759 PubMed DOI PMC

Papi A, Ison MG, Langley JM, Lee DG, Leroux-Roels I, Martinon-Torres F, et al. . Respiratory syncytial virus prefusion F protein vaccine in older adults. N Engl J Med. (2023) 388:595–608. doi: 10.1056/NEJMoa2209604 PubMed DOI

Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the development of a universal influenza vaccine. Viruses. (2022) 14(8):1684. doi: 10.3390/v14081684 PubMed DOI PMC

He X, Zhang T, Huan S, Yang Y. Novel influenza vaccines: from research and development (R&D) challenges to regulatory responses. Vaccines. (2023) 11(10):1573. doi: 10.3390/vaccines11101573 PubMed DOI PMC

Habibi MS, Chiu C. Controlled human infection with RSV: The opportunities of experimental challenge. Vaccine. (2017) 35:489–95. doi: 10.1016/j.vaccine.2016.08.086 PubMed DOI

Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled human infection models to accelerate vaccine development. Clin Microbiol Rev. (2022) 35:e0000821. doi: 10.1128/cmr.00008-21 PubMed DOI PMC

FLUniversal . Available online at: https://www.fluniversal.eu/ (Accessed January 30, 2025).

García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, et al. . Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology. (1998) 252:324–30. doi: 10.1006/viro.1998.9508 PubMed DOI

Diebold SS, Montoya M, Unger H, Alexopoulou L, Roy P, Haswell LE, et al. . Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature. (2003) 424:324–8. doi: 10.1038/nature01783 PubMed DOI

Mueller SN, Langley WA, Carnero E, García-Sastre A, Ahmed R. Immunization with live attenuated influenza viruses that express altered NS1 proteins results in potent and protective memory CD8+ T-cell responses. J Virol. (2010) 84:1847–55. doi: 10.1128/jvi.01317-09 PubMed DOI PMC

Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev. (2013) 26:476–92. doi: 10.1128/CMR.00097-12 PubMed DOI PMC

Paterson J, Ryan KA, Morley D, Jones NJ, Yeates P, Hall Y, et al. . Infection with seasonal H1N1 influenza results in comparable disease kinetics and host immune responses in ferrets and golden Syrian hamsters. Pathogens. (2023) 12(5):668. doi: 10.3390/pathogens12050668 PubMed DOI PMC

Iwatsuki-Horimoto K, Nakajima N, Ichiko Y, Sakai-Tagawa Y, Noda T, Hasegawa H, et al. . Syrian hamster as an animal model for the study of human influenza virus infection. J Virol. (2018) 92. doi: 10.1128/JVI.01693-17 PubMed DOI PMC

A Multicenter, Blinded, Randomized, Placebo-Controlled, Dose-Ranging Influenza Challenge Study in Healthy Adult Volunteers to Determine the Optimal Infection Dose and Safety of a Recombinant H3N2 (A/Texas/71/2017 (H3N2), Clade 3C3a) Influenza Challenge Virus (202). Available online at: https://clinicaltrials.gov/study/NCT04978454 (Accessed August 19, 2021).

Balasingam S, Wilder-Smith A. Randomized controlled trials for influenza drugs and vaccines: a review of controlled human infection studies. Int J Infect Dis. (2016) 49:18–29. doi: 10.1016/j.ijid.2016.05.013 PubMed DOI

Roestenberg M, Kamerling IMC, De Visser SJ. Controlled human infections as a tool to reduce uncertainty in clinical vaccine development. Front Med. (2018) 5:297. doi: 10.3389/fmed.2018.00297 PubMed DOI PMC

World Health Organization . WHO guidance on the ethical conduct of controlled human infection studies (2021). Available online at: https://www.who.int/publications/i/item/9789240037816 (Accessed January 30, 2025).

Cnossen VM, van Leeuwen RP, Mazur NI, Vernhes C, Voorde ten W, Burggraaf J, et al. . From setbacks to success: lessons from the journey of RSV vaccine development. Ther Adv Vacc Immunother. (2024) 12:25151355241308305. doi: 10.1177/25151355241308305 PubMed DOI PMC

Goldblatt D, Alter G, Crotty S, Plotkin SA. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol Rev. (2022) 310:6–26. doi: 10.1111/imr.13091 PubMed DOI PMC

Mazur NI, Terstappen J, Baral R, Bardají A, Beutels P, Buchholz UJ, et al. . Respiratory syncytial virus prevention within reach: the vaccine and monoclonal antibody landscape. Lancet Infect Dis. (2023) 23:e2–e21. doi: 10.1016/S1473-3099(22)00291-2 PubMed DOI PMC

Black S, Nicolay U, Vesikari T, Knuf M, Giudice Del G, Cioppa Della G, et al. . Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr Infect Dis J. (2011) 30. Available at: https://journals.lww.com/pidj/fulltext/2011/12000/hemagglutination_inhibition_antibody_titers_as_a.14.aspx (Accessed January 30, 2025). PubMed

Wijnans L, Voordouw B. A review of the changes to the licensing of influenza vaccines in Europe. Influenza Other Resp Virus. (2016) 10:2–8. doi: 10.1111/irv.12351 PubMed DOI PMC

Gould VMW, Francis JN, Anderson KJ, Georges B, Cope AV, Tregoning JS. Nasal igA provides protection against human influenza challenge in volunteers with low serum influenza antibody titre. Front Microbiol. (2017) 8:900. doi: 10.3389/fmicb.2017.00900 PubMed DOI PMC

McElhaney JE, Xie D, Hager WD, Barry MB, Wang Y, Kleppinger A, et al. . T cell responses are better correlates of vaccine protection in the elderly. J Immunol. (2006) 176:6333–9. doi: 10.4049/jimmunol.176.10.6333 PubMed DOI

Barrett PN, Berezuk G, Fritsch S, Aichinger G, Hart MK, El-Amin W, et al. . Efficacy, safety, and immunogenicity of a Vero-cell-culture-derived trivalent influenza vaccine: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet. (2011) 377:751–9. doi: 10.1016/S0140-6736(10)62228-3 PubMed DOI

Dunning Andrew J, DiazGranados Carlos A, Voloshen T, Hu B, Landolfi VA, Keipp TH. Correlates of protection against influenza in the elderly: results from an influenza vaccine efficacy trial. Clin Vacc Immunol. (2016) 23:228–35. doi: 10.1128/CVI.00604-15 PubMed DOI PMC

Ward BJ, Pillet S, Charland N, Trepanier S, Couillard J, Landry N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum Vacc Immunother. (2018) 14:647–56. doi: 10.1080/21645515.2017.1413518 PubMed DOI PMC

van Dorst MMAR, Azimi S, Wahyuni S, Amaruddin A, Sartono E, Wammes LJ, et al. . Differences in bacterial colonization and mucosal responses between high and low SES children in Indonesia. Pediatr Infect Dis J. (2022) 41. Available at: https://journals.lww.com/pidj/fulltext/2022/06000/differences_in_bacterial_colonization_and_mucosal.13.aspx (Accessed January 30, 2025). PubMed

Roukens AHE, Pothast CR, König M, Huisman W, Dalebout T, Tak T, et al. . Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nat Immunol. (2022) 23:23–32. doi: 10.1038/s41590-021-01095-w PubMed DOI

Jochems SP, Piddock K, Rylance J, Adler H, Carniel BF, Collins A, et al. . Novel analysis of immune cells from nasal microbiopsy demonstrates reliable, reproducible data for immune populations, and superior cytokine detection compared to nasal wash. PloS One. (2017) 12:e0169805. doi: 10.1371/journal.pone.0169805 PubMed DOI PMC

Carniel BF, Marcon F, Rylance J, German EL, Zaidi S, Reiné J, et al. . Pneumococcal colonization impairs mucosal immune responses to live attenuated influenza vaccine. JCI Insight. (2021) 6(4):e141088. doi: 10.1172/jci.insight.141088 PubMed DOI PMC

Lim JME, Tan AT, Bertoletti A. Protocol to detect antigen-specific nasal-resident T cells in humans. STAR Protoc. (2023) 4:101995. doi: 10.1016/j.xpro.2022.101995 PubMed DOI PMC

de Silva TI, Gould V, Mohammed NI, Cope A, Meijer A, Zutt I, et al. . Comparison of mucosal lining fluid sampling methods and influenza-specific IgA detection assays for use in human studies of influenza immunity. J Immunol Methods. (2017) 449:1–6. doi: 10.1016/j.jim.2017.06.008 PubMed DOI

Prins MLM, Roozen GVT, Pothast CR, Huisman W, Binnendijk van R, Hartog den G, et al. . Immunogenicity and reactogenicity of intradermal mRNA-1273 SARS-CoV-2 vaccination: a non-inferiority, randomized-controlled trial. NPJ Vacc. (2024) 9:1. doi: 10.1038/s41541-023-00785-w PubMed DOI PMC

Begue S, Waerlop G, Salaun B, Janssens M, Bellamy D, Cox RJ, et al. . Harmonization and qualification of intracellular cytokine staining to measure influenza-specific CD4+ T cell immunity within the FLUCOP consortium. Front Immunol. (2022) 13. doi: 10.3389/fimmu.2022.982887 PubMed DOI PMC

Waldock J, Zheng L, Remarque EJ, Civet A, Hu B, Jalloh SL, et al. . Assay harmonization and use of biological standards to improve the reproducibility of the hemagglutination inhibition assay: a FLUCOP collaborative study. mSphere. (2021) 6. doi: 10.1128/msphere.00567-21 PubMed DOI PMC

Waerlop G, Leroux-Roels G, Pagnon A, Begue S, Salaun B, Janssens M, et al. . Proficiency tests to evaluate the impact on assay outcomes of harmonized influenza-specific Intracellular Cytokine Staining (ICS) and IFN-γ Enzyme-Linked ImmunoSpot (ELISpot) protocols. J Immunol Methods. (2023) 523:113584. doi: 10.1016/j.jim.2023.113584 PubMed DOI

Kurtovic L, Feng G, Hysa A, Haghiri A, O'Flaherty K, Wines BW, et al. . Antibody mechanisms of protection against malaria in RTS,S-vaccinated children: a post-hoc serological analysis of phase 2 trial. Lancet Microbe. (2024) 5:100898. doi: 10.1016/S2666-5247(24)00130-7 PubMed DOI

Ehrenberg PK, Shangguan S, Issac B, Alter G, Geretz A, Izumi T, et al. . A vaccine-induced gene expression signature correlates with protection against SIV and HIV in multiple trials. Sci Trans Med. (2019) 11:eaaw4236. doi: 10.1126/scitranslmed.aaw4236 PubMed DOI PMC

McIlwain DR, Chen H, Rahil Z, Aghaeepour N, Tucker SN, Nolan GP, et al. . Human influenza virus challenge identifies cellular correlates of protection for oral vaccination. Cell Host Microbe. (2021) 29:1828–1837.e5. doi: 10.1016/j.chom.2021.10.009 PubMed DOI PMC

Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: An R package for ‘omics feature selection and multiple data integration. PloS Comput Biol. (2017) 13:e1005752. doi: 10.1371/journal.pcbi.1005752 PubMed DOI PMC

Jazayeri SD, Poh CL. Development of universal influenza vaccines targeting conserved viral proteins. Vaccines. (2019) 7(4):169. doi: 10.3390/vaccines7040169 PubMed DOI PMC

Uno N, Ross TM. Multivalent next generation influenza virus vaccines protect against seasonal and pre-pandemic viruses. Sci Reports. (2024) 14:1440. doi: 10.1038/s41598-023-51024-0 PubMed DOI PMC

Shinde V, Cho I, Plested JS, Agrawal S, Fiske J, Cai R, et al. . Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. Lancet Infect Dis. (2022) 22:73–84. doi: 10.1016/S1473-3099(21)00192-4 PubMed DOI

Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SSP, et al. . A comprehensive review of mRNA vaccines. Int J Mol Sci. (2023) 24(3):2700. doi: 10.3390/ijms24032700 PubMed DOI PMC

Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, et al. . Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol Ther. (2017) 25:1316–27. doi: 10.1016/j.ymthe.2017.03.035 PubMed DOI PMC

Ullah S, Ross TM. Next generation live-attenuated influenza vaccine platforms. Expert Rev Vacc. (2022) 21:1097–110. doi: 10.1080/14760584.2022.2072301 PubMed DOI

Taaffe J, Ostrowsky JT, Mott J, Goldin S, Friede M, Gsell P, et al. . Advancing influenza vaccines: A review of next-generation candidates and their potential for global health impact. Vaccine. (2024) 42:126408. doi: 10.1016/j.vaccine.2024.126408 PubMed DOI PMC

World Health Organization . WHO Preferred Product Characteristics for next Generation Influenza Vaccines. Geneva, Switzerland: World Health Organization; (2017). Available at: https://iris.who.int/handle/10665/258767.

Atsmon J, Caraco Y, Ziv-Sefer S, Shaikevich D, Abramov E, Volokhov I, et al. . Priming by a novel universal influenza vaccine (Multimeric-001)—A gateway for improving immune response in the elderly population. Vaccine. (2014) 32:5816–23. doi: 10.1016/j.vaccine.2014.08.031 PubMed DOI

Atmar RL, Bernstein DI, Winokur P, Frey SE, Angelo LS, Bryant C, et al. . Safety and immunogenicity of Multimeric-001 (M-001) followed by seasonal quadrivalent inactivated influenza vaccine in young adults – A randomized clinical trial. Vaccine. (2023) 41:2716–22. doi: 10.1016/j.vaccine.2023.03.023 PubMed DOI PMC

BiondVax Pharmaceuticals Ltd . BiondVax Announces Topline Results from Phase 3 Clinical Trial of the M-001 Universal Influenza Vaccine Candidate (2020). Available online at: https://www.prnewswire.com/news-releases/biondvax-announces-topline-results-from-phase-3-clinical-trial-of-the-m-001-universal-influenza-vaccine-candidate-301158876.html (Accessed January 30, 2025).

Chen WH, Cohen MB, Kirkpatrick BD, Brady RC, Galloway D, Gurwith M, et al. . Single-dose live oral cholera vaccine CVD 103-hgR protects against human experimental infection with vibrio cholerae O1 el tor. Clin Infect Dis. (2016) 62:1329–35. doi: 10.1093/cid/ciw145 PubMed DOI PMC

Meiring JE, Giubilini A, Savulescu J, Pitzer VE, Pollard AJ. Generating the evidence for typhoid vaccine introduction: considerations for global disease burden estimates and vaccine testing through human challenge. Clin Infect Dis. (2019) 69:S402–7. doi: 10.1093/cid/ciz630 PubMed DOI PMC

Matuschewski K, Borrmann S. Controlled Human malaria Infection (CHMI) Studies: Over 100 Years of Experience with Parasite Injections. In: Ariey F, Gay F, Ménard R, editors. Malaria Control and Elimination. Springer, New York: (2019). p. 91–101. doi: 10.1007/978-1-4939-9550-9_7 PubMed DOI

Hodgson SH, Juma E, Salim A, Magiri C, Njenga D, Molyneux S, et al. . Lessons learnt from the first controlled human malaria infection study conducted in Nairobi, Kenya. Malaria J. (2015) 14:182. doi: 10.1186/s12936-015-0671-x PubMed DOI PMC

CIVICs - Collaborative Influenza Vaccine Innovation Centers . Available online at: https://www.niaidcivics.org/ (Accessed January 30, 2025). PubMed PMC

Inno4vac . CHIMICHURRI - ST2 Controlled Human Infection Models (CHIMs) . Available online at: https://www.inno4vac.eu/st2chimichurri (Accessed January 30, 2025).

Mohsen MO, Bachmann MF. Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol. (2022) 19:993–1011. doi: 10.1038/s41423-022-00897-8 PubMed DOI PMC

Schwartzman LM, Cathcart AL, Pujanauski LM, Qi L, Kash JC, Taubenberger JK. An intranasal virus-like particle vaccine broadly protects mice from multiple subtypes of influenza A virus. mBio. (2015) 6. doi: 10.1128/mbio.01044-15 PubMed DOI PMC

FDA News Release . FDA Approves Nasal Spray Influenza Vaccine for Self- or Caregiver-Administration (2024). Available online at: https://www.fda.gov/news-events/press-announcements/fda-approves-nasal-spray-influenza-vaccine-self-or-caregiver-administration (Accessed January 30, 2025).

European Medicines Agency . Fluenz (2024). Available online at: https://www.ema.europa.eu/en/medicines/human/EPAR/fluenz (Accessed January 30, 2025).

de Vries RD, Rimmelzwaan GF. Viral vector-based influenza vaccines. Hum Vacc Immunother. (2016) 12:2881–901. doi: 10.1080/21645515.2016.1210729 PubMed DOI PMC

Liebowitz D, Gottlieb K, Kolhatkar NS, Garg SJ, Asher JM, Nazareno J, et al. . Efficacy, immunogenicity, and safety of an oral influenza vaccine: a placebo-controlled and active-controlled phase 2 human challenge study. Lancet Infect Dis. (2020) 20:435–44. doi: 10.1016/S1473-3099(19)30584-5 PubMed DOI

The IVR initiative . Universal Influenza Vaccine Technology Landscape (2025). Available online at: https://ivr.cidrap.umn.edu/universal-influenza-vaccine-technology-landscape (Accessed January 30, 2025).

Lutz J, Lazzaro S, Habbeddine M, Schmidt KE, Baumhof P, Mui BL, et al. . Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vacc. (2017) 2:29–9. doi: 10.1038/s41541-017-0032-6 PubMed DOI PMC

Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, et al. . Nanoparticle-based delivery systems for vaccines. Vaccines. (2022) 10(11):1946. doi: 10.3390/vaccines10111946 PubMed DOI PMC

Cai J, Wang H, Wang D, Li Y. Improving cancer vaccine efficiency by nanomedicine. Adv Biosys. (2019) 3:1800287. doi: 10.1002/adbi.201800287 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...