Effect of Laser Surface Texturing and Fabrication Methods on Tribological Properties of Ti6Al4V/HAp Biocomposites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-22-0133
Comenius University Bratislava
ERA.NET3/2022/48/BiLaTex/2023
Cracow University of Technology
PubMed
40508466
PubMed Central
PMC12155581
DOI
10.3390/ma18112468
PII: ma18112468
Knihovny.cz E-zdroje
- Klíčová slova
- SPS, biocomposite, biomaterial, friction, hydroxyapatite, laser surface texturing, titanium alloy,
- Publikační typ
- časopisecké články MeSH
Bone diseases lead to an increasing demand for implants to treat long bone defects and for load-bearing applications. Osteoporosis care and accidental injuries are major contributors to this rising need. Our research aims to demonstrate innovative material systems and methods for preparing implants that can be used in regenerative medicine. We hypothesize that by combining titanium alloys (Ti6Al4V) with hydroxyapatite (Hap), we can enhance biocompatibility and tribo-mechanical performance, which are critical for the longevity of Ti-based surgical implants. Additionally, we investigate the application of laser surface treatments to expose the underlying porosity, thereby enhancing cell transport and promoting cell growth. In this study, we investigate the effects of two fabrication techniques-Spark Plasma Sintering (SPS) and powder metallurgy (PM)-on the properties of laser-textured Ti64/Hap biocomposites. Our findings demonstrate that the selected processing route significantly influences the microstructure, tribological performance, and surface properties of these materials. An X-ray diffraction (XRD) analysis corroborates our results from incubation studies in simulated body fluids, highlighting the impact of phase transformations during sintering on the chemical properties of Ti-Hap composites. Additionally, while laser surface texturing was found to slightly increase the friction coefficient, it markedly enhanced the wear resistance, particularly for the PM and SPS Ti + 5%Hap composites.
Zobrazit více v PubMed
Jongprateep O., Inseemeesak B., Techapiesancha-Roenkij R., Bansiddhi A., Vijarnsorn M. Effects of surface modification processes on the adhesion of hydroxyapatite layers coated onto titanium substrates. J. Met. Mater. Miner. 2019;29:69–79. doi: 10.55713/jmmm.v29i4.489. DOI
Banerjee D., Bose S. Effects of Aloe Vera Gel Extract in Doped Hydroxyapatite-Coated Titanium Implants on In Vivo and In Vitro Biological Properties. ACS Appl. Bio Mater. 2019;2:3194–3202. doi: 10.1021/acsabm.9b00077. PubMed DOI
Kumar R., Rezapourian M., Rahmani R., Maurya H.S., Kamboj N., Hussainova I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics. 2024;9:209. doi: 10.3390/biomimetics9040209. PubMed DOI PMC
Hu F., Fan X., Peng F., Yan X., Song J., Deng C., Liu M., Zeng D., Ning C. Characterization of Porous Titanium-Hydroxyapatite Composite Biological Coating on Polyetheretherketone (PEEK) by Vacuum Plasma Spraying. Coatings. 2022;12:433. doi: 10.3390/coatings12040433. DOI
Vasile V.A., Pirvulescu R.A., Iancu R.C., Garhöfer G., Schmetterer L., Ghita A.M., Ionescu D., Istrate S., Piticescu R.M., Cursaru L.M., et al. Titanium Implants Coated with Hydroxyapatite Used in Orbital Wall Reconstruction—A Literature Review. Materials. 2024;17:1676. doi: 10.3390/ma17071676. PubMed DOI PMC
Man H.C., Zhao N.Q., Cui Z.D. Surface morphology of a laser surface nitrided and etched Ti-6Al-4V alloy. Surf. Coat. Technol. 2005;192:341–346. doi: 10.1016/j.surfcoat.2004.07.076. DOI
Comín R., Cid M.P., Grinschpun L., Oldani C., Salvatierra N.A. Titanium-Hydroxyapatite Composites Sintered at Low Temperature for Tissue Engineering: In vitro Cell Support and Biocompatibility. J. Appl. Biomater. Funct. Mater. 2017;15:176–183. doi: 10.5301/jabfm.5000340. PubMed DOI PMC
Balbinotti P., Gemelli E., Buerger G., De Lima S.A., De Jesus J., Camargo N.H.A., Henriques V.A.R., De Almeida Soares G.D. Microstructure development on sintered Ti/HA biocomposites produced by powder metallurgy. Mater. Res. 2011;14:384–393. doi: 10.1590/S1516-14392011005000044. DOI
Rogina A., Košić I., Antunović M., Ivanković M., Ivanković H. The Bioactivity of Titanium-Cuttlefish Bone-Derived Hydroxyapatite Composites Sintered at Low Temperature. Powder Metall. 2020;63:300–310. doi: 10.1080/00325899.2020.1804185. DOI
Kim H.-W., Kong Y.-M., Koh Y.-H., Kim H.-E., Kim H.-M., Ko J.S. Pressureless Sintering and Mechanical and Biological Properties of Fluor-hydroxyapatite Composites with Zirconia. J. Am. Ceram. Soc. 2003;86:2019–2026. doi: 10.1111/j.1151-2916.2003.tb03602.x. DOI
Bernache-Assollant D., Ababou A., Champion E., Heughebaert M. Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth. J. Eur. Ceram. Soc. 2003;23:229–241. doi: 10.1016/S0955-2219(02)00186-3. DOI
Kumar R., Antonov M., Liu L., Hussainova I. Sliding wear performance of in-situ spark plasma sintered Ti-TiBw composite at temperatures up to 900 °C. Wear. 2021;476:203663. doi: 10.1016/j.wear.2021.203663. DOI
Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review. J. Funct. Biomater. 2015;6:1099–1140. doi: 10.3390/jfb6041099. PubMed DOI PMC
Kumar A., Biswas K., Basu B. On the toughness enhancement in hydroxyapatite-based composites. Acta Mater. 2013;61:5198–5215. doi: 10.1016/j.actamat.2013.05.013. DOI
Tancred D.C., McCormack B.A.O., Carr A.J. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials. 1998;19:2303–2311. doi: 10.1016/S0142-9612(98)00141-0. PubMed DOI
Murugan R., Ramakrishna S. Development of nanocomposites for bone grafting. Compos. Sci. Technol. 2005;65:2385–2406. doi: 10.1016/j.compscitech.2005.07.022. DOI
Hu T., Hu L., Ding Q. The effect of laser surface texturing on the tribological behavior of Ti-6Al-4V. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 2012;226:854–863. doi: 10.1177/1350650112450801. DOI
Salguero J., Del Sol I., Vazquez-Martinez J.M., Schertzer M.J., Iglesias P. Effect of laser parameters on the tribological behavior of Ti6Al4V titanium microtextures under lubricated conditions. Wear. 2019;426:1272–1279. doi: 10.1016/j.wear.2018.12.029. DOI
Kedia S., Nilaya J.P. Effect of picosecond-laser induced microstructuring of Ti6Al4V bio-alloy on its tribological and corrosion properties. Appl. Phys. A. 2023;129:710. doi: 10.1007/s00339-023-06994-3. DOI
Lian F., Zhang H.C., Pang L.Y. Laser texture manufacturing on Ti6A14V surface and its dry tribological characteristics. Lubr. Eng. 2011;36:1–5.
Xu P., Zhou F., Wang Q., Peng Y., Chen J., Yun N. Influence of meshwork pattern grooves on the tribological characteristics of Ti-6Al-4V alloy in water lubrication. Tribology. 2012;32:377–383.
Hu T., Hu L., Ding Q. Effective solution for the tribological problems of Ti-6Al-4V: Combination of laser surface texturing and solid lubricant film. Surf. Coat. Technol. 2012;206:5060–5066. doi: 10.1016/j.surfcoat.2012.06.014. DOI
Amanov A., Sasaki S. A study on the tribological characteristics of duplex-treated Ti-6Al-4V alloy under oil-lubricated sliding conditions. Tribol. Int. 2013;64:155–163. doi: 10.1016/j.triboint.2013.03.015. DOI
Muthuvel P.A., Rajagopal R. Influence of surface texture on tribological performance of AlCrN nanocomposite coated titanium alloy surfaces. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 2013;227:1157–1164. doi: 10.1177/1350650113482826. DOI
Ripoll M.R., Simič R., Brenner J., Podgornik B. Friction and Lifetime of Laser Surface–Textured and MoS2-Coated Ti6Al4V Under Dry Reciprocating Sliding. Tribol. Lett. 2013;51:261–271. doi: 10.1007/s11249-013-0170-6. DOI
Sadeghi M., Kharaziha M., Salimijazi H.R., Tabesh E. Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications. Surf. Coat. Technol. 2019;362:282–292. doi: 10.1016/j.surfcoat.2019.01.113. DOI
Zhao X., Zhang H., Liu H., Li S., Li W., Wang X. In vitro bio-tribological behaviour of textured nitride coating on selective laser melted Ti-6Al-4V alloy. Surf. Coat. Technol. 2021;409:126904. doi: 10.1016/j.surfcoat.2021.126904. DOI
Wang C., Tian P., Cao H., Sun B., Yan J., Xue Y., Lin H., Ren T., Han S., Zhao X. Enhanced Biotribological and Anticorrosion Properties and Bioactivity of Ti6Al4V Alloys with Laser Texturing. ACS Omega. 2022;7:31081–31097. doi: 10.1021/acsomega.2c03166. PubMed DOI PMC
Kümmel D., Hamann-Schroer M., Hetzner H., Schneider J. Tribological behavior of nanosecond-laser surface textured Ti6Al4V. Wear. 2019;422:261–268. doi: 10.1016/j.wear.2019.01.079. DOI
Khulief Z. Ph.D. Thesis. University of Sheffield; Sheffield, UK: 2018. Tribological, Electrochemical, and Tribocorrosion Behaviour of New Titanium Biomedical Alloys.
Injeti V.S.Y., Nune K.C., Reyes E., Yue G., Li S.J., Misra R.D.K. A comparative study on the tribological behavior of Ti-6Al-4V and Ti-24Nb-4Zr-8Sn alloys in simulated body fluid. Mater. Technol. 2019;34:270–284. doi: 10.1080/10667857.2018.1550138. DOI
Namus R., Nutter J., Qi J., Rainforth W.M. Sliding speed influence on the tribo-corrosion behaviour of Ti6Al4V alloy in simulated body fluid. Tribol. Int. 2021;160:107023. doi: 10.1016/j.triboint.2021.107023. DOI
Wang C., Zhang G., Li Z., Zeng X., Xu Y., Zhao S., Hu H., Zhang Y., Ren T. Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants. J. Mech. Behav. Biomed. Mater. 2019;90:460–471. doi: 10.1016/j.jmbbm.2018.10.031. PubMed DOI
Atar E. A Study on Wear Testing of Orthopedic Implant Materials in Simulated Body Fluid. Mater. Test. 2013;55:103–108. doi: 10.3139/120.110416. DOI
Solanke S., Gaval V., Sanghavi S. In vitro tribological investigation and osseointegration assessment for metallic orthopedic bioimplant materials. Mater. Today Proc. 2021;44:4173–4178. doi: 10.1016/j.matpr.2020.10.528. DOI
Sagbas B., Gencelli G., Sever A. Effect of Process Parameters on Tribological Properties of Ti6Al4V Surfaces Manufactured by Selective Laser Melting. J. Mater. Eng. Perform. 2021;30:4966–4973. doi: 10.1007/s11665-021-05573-y. DOI
Chandramohan P., Bhero S., Obadele B.A., Olubambi P.A. Laser additive manufactured Ti-6Al-4V alloy: Tribology and corrosion studies. Int. J. Adv. Manuf. Technol. 2017;92:3051–3061. doi: 10.1007/s00170-017-0410-2. DOI
Dong H., Bell T. Tribological behaviour of alumina sliding against Ti6Al4V in unlubricated contact. Wear. 1999;225:874–884. doi: 10.1016/S0043-1648(98)00407-4. DOI
Cvijović-Alagić I., Cvijović Z., Mitrović S., Rakin M., Veljović Đ., Babić M. Tribological Behaviour of Orthopaedic Ti-13Nb-13Zr and Ti-6Al-4V Alloys. Tribol. Lett. 2010;40:59–70. doi: 10.1007/s11249-010-9639-8. DOI
Choubey A., Basu B., Balasubramaniam R. Tribological behaviour of Ti-based alloys in simulated body fluid solution at fretting contacts. Mater. Sci. Eng. A. 2004;379:234–239. doi: 10.1016/j.msea.2004.02.027. DOI
Yazdi R., Ghasemi H.M., Abedini M., Wang C., Neville A. Mechanism of tribofilm formation on Ti6Al4V oxygen diffusion layer in a simulated body fluid. J. Mech. Behav. Biomed. Mater. 2018;77:660–670. doi: 10.1016/j.jmbbm.2017.10.020. PubMed DOI
Lu P., Wu M., Liu X., Miao X., Duan W. A tribocorrosion investigation of SLM fabricated Ti6Al4V nanocomposites by laser rescanning and GO mixing. Rapid Prototyp. J. 2022;28:32–40. doi: 10.1108/RPJ-07-2020-0164. DOI
Xiang D., Tan X., Liao Z., He J., Zhang Z., Liu W., Wang C., Shu B.T. Comparison of wear properties of Ti6Al4V fabricated by wrought and electron beam melting processes in simulated body fluids. Rapid Prototyp. J. 2020;26:959–969. doi: 10.1108/RPJ-09-2018-0256. DOI
Mischler S., Barril S., Landolt D. Fretting corrosion behaviour of Ti-6Al-4V/PMMA contact in simulated body fluid. Tribol. Mater. Surf. Interfaces. 2009;3:16–23. doi: 10.1179/175158309X408333. DOI
Su J., Xie H., Tan C., Xu Z., Liu J., Jiang F., Tang J., Fu D., Zhang H., Teng J. Microstructural characteristics and tribological behavior of an additively manufactured Ti-6Al-4V alloy under direct aging and solution-aging treatments. Tribol. Int. 2022;175:107763. doi: 10.1016/j.triboint.2022.107763. DOI
Tang M., Zhang L., Zhang N. Microstructural evolution, mechanical and tribological properties of TiC/Ti6Al4V composites with unique microstructure prepared by SLM. Mater. Sci. Eng. A. 2021;814:141187. doi: 10.1016/j.msea.2021.141187. DOI
Albayrak Ç., Hacısalihoğlu İ., Alsaran A. Tribocorrosion behavior of duplex treated pure titanium in Simulated Body Fluid. Wear. 2013;302:1642–1648. doi: 10.1016/j.wear.2013.01.064. DOI
Pu J., Zhang Y., Zhang X., Zhang X., Yuan X., Wang Z., Zhang G., Cui W., Jin Z. Revealing the composite fretting-corrosion mechanisms of Ti6Al4V alloy against zirconia-toughened alumina ceramic in simulated body fluid. J. Mech. Behav. Biomed. Mater. 2023;146:106074. doi: 10.1016/j.jmbbm.2023.106074. PubMed DOI
Lu P., Wu M., Liu X., Duan W., Han J. Study on Corrosion Resistance and Bio-Tribological Behavior of Porous Structure Based on the SLM Manufactured Medical Ti6Al4V. Met. Mater. Int. 2020;26:1182–1191. doi: 10.1007/s12540-019-00506-w. DOI
Pandey A.K., Kumar A., Kumar R., Gautam R.K., Behera C.K. Tribological performance of SS 316L, commercially pure titanium, and Ti6Al4V in different solutions for biomedical applications. Mater. Today Proc. 2023;78:A1–A8. doi: 10.1016/j.matpr.2023.03.736. DOI
Singh G., Sharma N., Kumar D., Hegab H. Design, development and tribological characterization of Ti-6Al-4V/hydroxyapatite composite for bio-implant applications. Mater. Chem. Phys. 2020;243:122662. doi: 10.1016/j.matchemphys.2020.122662. DOI
Tian P., Zhao X., Sun B., Cao H., Zhao Y., Yan J., Xue Y., Lin H., Han S., Ren T., et al. Enhanced anticorrosion and tribological properties of Ti6Al4V alloys with Fe3O4/HA coatings. Surf. Coat. Technol. 2022;433:128118. doi: 10.1016/j.surfcoat.2022.128118. DOI
Avila J.D., Stenberg K., Bose S., Bandyopadhyay A. Hydroxyapatite reinforced Ti6Al4V composites for load-bearing implants. Acta Biomater. 2021;123:379–392. doi: 10.1016/j.actbio.2020.12.060. PubMed DOI PMC
Increasing the tribological performances of Ti-6Al-4V alloy by forming a thin nanoporous TiO2 layer and hydroxyapatite electrodeposition under lubricated conditions. Tribol. Int. 2014;78:168–175. doi: 10.1016/j.triboint.2014.05.013. DOI
Sadlik J., Kosińska E., Bańkosz M., Tomala A., Bruzda G., Jampilek J., Sobczak-Kupiec A. Gradient Titanium Alloy with Bioactive Hydroxyapatite Porous Structures for Potential Biomedical Applications. Materials. 2024;17:5511. doi: 10.3390/ma17225511. PubMed DOI PMC
Ressler A., Kamboj N., Ledinski M., Rogina A., Urlić I., Hussainova I., Ivanković H., Ivanković M. Macroporous silicon-wollastonite scaffold with Sr/Se/Zn/Mg-substituted hydroxyapatite/chitosan hydrogel. Open Ceram. 2022;12:100306. doi: 10.1016/j.oceram.2022.100306. DOI
Kumar R., Torres H., Aydinyan S., Antonov M., Varga M., Rodriguez Ripoll M., Hussainova I. Microstructure and high temperature tribological behaviour of self-lubricating Ti-TiBx composite doped with NiBi. Surf. Coat. Technol. 2022;447:128827. doi: 10.1016/j.surfcoat.2022.128827. DOI
Weston N.S., Derguti F., Tudball A., Jackson M. Spark plasma sintering of commercial and development titanium alloy powders. J. Mater. Sci. 2015;50:4860–4878. doi: 10.1007/s10853-015-9029-6. DOI
Kumar R., Aydinyan S., Ivanov R., Liu L., Antonov M., Hussainova I. High-Temperature Wear Performance of hBN-Added Ni-W Composites Produced from Combustion-Synthesized Powders. Materials. 2022;15:1252. doi: 10.3390/ma15031252. PubMed DOI PMC
Veljović D., Jančić-Hajneman R., Balać I., Jokić B., Putić S., Petrović R., Janaćković D. The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceram. Int. 2011;37:471–479. doi: 10.1016/j.ceramint.2010.09.014. DOI
Lu J.X., Flautre B., Anselme K., Hardouin P., Gallur A., Descamps M., Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J. Mater. Sci. Mater. Med. 1999;10:111–120. doi: 10.1023/A:1008973120918. PubMed DOI
Kumar R., Agrawal A. Micro-hydroxyapatite reinforced Ti-based composite with tailored characteristics to minimize stress-shielding impact in bio-implant applications. J. Mech. Behav. Biomed. Mater. 2023;142:105852. doi: 10.1016/j.jmbbm.2023.105852. PubMed DOI
Ong J.L., Chan D.C. Hydroxyapatite and their use as coatings in dental implants: A review. Crit. Rev. Biomed. Eng. 2000;28:667–707. doi: 10.1615/CritRevBiomedEng.v28.i56.10. PubMed DOI
Kido H., Saha S. Effect of HA coating on the long-term survival of dental implant: A review of the literature. J. Long. Term. Eff. Med. Implant. 1996;6:119–133. PubMed
Lee J.J., Rouhfar L., Beirne O.R. Survival of hydroxyapatite-coated implants: A meta-analytic review. J. Oral Maxillofac. Surg. 2000;58:1372–1379. doi: 10.1053/joms.2000.18269. PubMed DOI