Evolution and functioning of an X-A balance sex-determining system in hops
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
22H05172 and 22H05173
MEXT | Japan Society for the Promotion of Science (JSPS)
22H05181
MEXT | Japan Society for the Promotion of Science (JSPS)
22H02598
MEXT | Japan Society for the Promotion of Science (JSPS)
JPMJPR20D1
MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
PubMed
40533651
DOI
10.1038/s41477-025-02017-6
PII: 10.1038/s41477-025-02017-6
Knihovny.cz E-resources
- MeSH
- Chromosomes, Plant * genetics MeSH
- Genome, Plant MeSH
- Humulus * genetics MeSH
- Dosage Compensation, Genetic MeSH
- Evolution, Molecular * MeSH
- Sex Determination Processes * MeSH
- Publication type
- Journal Article MeSH
Chromosomal sex-determining systems with male heterogamety include actively male-determining-Y and X-A balance systems, both of which are found in animals and plants. The sex-determining genes have been identified in several active-Y plant systems, but the evolution and functioning of X-A balance systems remains mysterious. Here we sequenced and compared the genomes of two hop species. The evolution of the hop X-A balance system involved an ancient recombination suppression event across a large X chromosome region shared by both species. In one species, an autosome fused to this ancestral sex chromosome, and recombination was subsequently suppressed again. The two evolutionary strata created in this neo-X have degenerated to different degrees and evolved correspondingly different dosage compensation levels that correlate with histone modification patterns. Finally, we identified an X-specific ETR1-like ethylene receptor in the ancestral X region. Its dosage may affect sex determination, as part of the counting mechanism of this X-A balance system.
Advanced Genomics Center National Institute of Genetics Mishima Japan
Faculty of Agriculture Iwate University Morioka Japan
Faculty of Science Academic Assembly University of Toyama Gofuku Japan
Graduate School of Environmental and Life Science Okayama University Okayama Japan
Hop Research Institute Co Ltd Žatec Czech Republic
Institute of Ecology and Evolution University of Edinburgh Edinburgh UK
Iwate Biotechnology Research Center Kitakami Japan
Japan Science and Technology Agency PRESTO Kawaguchi shi Japan
Kazusa DNA Research Institute Kisarazu Japan
School of Life Science and Technology Institute of Science Tokyo Tokyo Japan
See more in PubMed
Blackburn, K. B. Sex chromosomes in plants. Nature 112, 687–688 (1923).
Kihara, H. & Ono, T. Cytological studies on Rumes L. I. chromosomes of Rumex acetosa L. Shokubutsugaku Zasshi 37, 84–90 (1923).
Winge, O. On sex chromosomes, sex determination and preponderance of females in some dioecious plants. C. R. Trav. Lab. Carlsberg 15, 1–26 (1923).
Westergaard, M. The mechanism of sex determination in dioecious flowering plants. Adv. Genet 9, 217–281 (1958). PubMed
Sinclair, A. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990). PubMed
Bridges, C. B. Triploid intersexes in Drosophila melanogaster. Science 54, 252–254 (1924).
Madl, J. E. & Herman, K. R. Polyploids and sex determination in Caenorhabditis elegans. Genetics 93, 393–402 (1979). PubMed PMC
Smith, B. W. The mechanism of sex determination in Rumex hastatulus. Genetics 48, 1265–1288 (1963). PubMed PMC
Neve, R. A. Sex Determination in the Cultivated Hop Humulus lupulus. PhD thesis, Univ. London (1961).
Neve, R. A. Hops (Chapman and Hall, 1991).
Ainsworth, C. Boys and girls come out to play: the molecular biology of dioecious plants. Ann. Bot. 86, 211–221 (2000).
Meyer, B. J. The X chromosome in C. elegans sex determination and dosage compensation. Curr. Opin. Genet. Dev. 74, 101912 (2022). PubMed PMC
Rifkin, J. L. et al. Widespread recombination suppression facilitates plant sex chromosome evolution. Mol. Biol. Evol. 38, 1018–1030 (2021). PubMed
Yue, J. et al. The origin and evolution of sex chromosomes, revealed by sequencing of the Silene latifolia female genome. Curr. Biol. 33, 2504–2514 (2023). PubMed PMC
Filatov, D. A. Evolution of a plant sex chromosome driven by expanding pericentromeric recombination suppression. Sci. Rep. 14, 1373 (2024). PubMed PMC
Akagi, T. et al. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014). PubMed
Harkess, A. et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 8, 1279 (2017). PubMed PMC
Akagi, T. et al. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell 30, 780–795 (2018). PubMed PMC
Akagi, T. et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 5, 801–809 (2019). PubMed
Müller, N. A. et al. A single gene underlies the dynamic evolution of poplar sex determination. Nat. Plants 6, 630–637 (2020). PubMed
Kazama, Y. et al. CLAVATA3-like gene acts as a gynoecium suppression function in white campion. Mol. Biol. Evol. 39, msac195 (2022). PubMed PMC
Akagi, T. et al. Rapid and dynamic evolution of a giant Y chromosome in Silene latifolia. Science 387, 637–643 (2025). PubMed
Kazama, Y. et al. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 6, 18917 (2016). PubMed PMC
Parker, J. S. & Clark, M. S. Dosage sex-chromosome systems in plants. Plant Sci. 80, 79–92 (1991).
Carvalho, A. B. et al. Origin and evolution of Y chromosomes: Drosophila tales. Trends Genet. 25, 270–277 (2009). PMC
Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6, 149–162 (1996). PubMed
Prentout, D. et al. Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. N. Phytol. 231, 1599–1611 (2021).
Grabowska-Joachimiak, A. et al. Genome size in Humulus lupulus L. and H. japonicus Siebold and Zucc. (Cannabaceae). Acta Soc. Bot. Pol. 75, 207–214 (2006).
Kihara, H. A case of linkage of sex-chromosomes with autosomes in the pollen mother cell of Humulus japonicus. Jpn. J. Genet. 5, 73–80 (1929).
Alexandrov, O. S. et al. Sex chromosome differentiation in Humulus japonicus Siebold & Zuccarini, 1846 (Cannabaceae) revealed by fluorescence in situ hybridization of subtelomeric repeat. Comp. Cytogenet. 6, 239–247 (2012). PubMed PMC
Motegi, T. Some observations on sex chromosomes and expression in Humulus japonicus. Sci. Rep. Tohoku Univ. Ser. 4 31, 7–16 (1965).
Brazier, T. & Glémin, S. Diversity and determinants of recombination landscapes in flowering plants. PLoS Genet. 18, e1010141 (2022). PubMed PMC
Pettitt, A. N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. C 28, 126–135 (1979).
Campos, J. L. et al. Recombination changes at the boundaries of fully and partially sex-linked regions between closely related Silene species pairs. Heredity 118, 395–403 (2017). PubMed
Toups, M. A. et al. A reciprocal translocation radically reshapes sex‐linked inheritance in the common frog. Mol. Ecol. 28, 1877–1889 (2019). PubMed PMC
Krasovec, M. et al. The location of the pseudoautosomal boundary in Silene latifolia. Genes 11, 610 (2020). PubMed PMC
Filatov, D. A. Recent expansion of the non-recombining sex-linked region on Silene latifolia sex chromosomes. J. Evol. Biol. 35, 1696–1708 (2022). PubMed PMC
Bergero, R., Gardner, J., Bader, B., Yong, L. & Charlesworth, D. Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc. Natl Acad. Sci. USA 116, 6924–6931 (2019). PubMed PMC
Beaudry, F. E. G. et al. Evolutionary genomics of plant gametophytic selection. Plant Commun. 1, 100115 (2020). PubMed PMC
Chibalina, M. V. & Filatov, D. A. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 21, 1475–1479 (2011). PubMed
Bergero, R. & Charlesworth, D. Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr. Biol. 21, 1470–1474 (2011). PubMed
Krasovec, M. et al. The mutation rate and the age of the sex chromosomes in Silene latifolia. Curr. Biol. 28, 1832–1838 (2018). PubMed
Horáková, L. et al. Centromeric repeat diversity underlies non-Mendelian segregation pattern in hop (Humulus lupulus). Preprint at bioRxiv https://doi.org/10.1101/2024.11.03.621702 (2024).
Muyle, A. et al. Dosage compensation evolution in plants: theories, controversies and mechanisms. Phil. Trans. R. Soc. B. 377, 20210222 (2022). PubMed PMC
Hough, J. et al. Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proc. Natl Acad. Sci. USA 11, 7713–7718 (2014).
Peregrín-Alvarez, J. M. et al. The conservation and evolutionary modularity of metabolism. Genome Biol. 10, R63 (2009). PubMed PMC
Nozawa, M., Ikeo, K. & Gojobori, T. Gene-by-gene or localized dosage compensation on the neo-X chromosome in Drosophila miranda. Genome Biol. Evol. 10, 1875–1881 (2018). PubMed PMC
Boualem, A. et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350, 688–691 (2015). PubMed
Thomas, T. D. In vitro modification of sex expression in mulberry (Morus alba) by ethrel and silver nitrate. Plant Cell Tissue Org. Cult. 77, 277–281 (2004).
García, A. et al. Two androecious mutations reveal the crucial role of ethylene receptors in the initiation of female flower development in Cucurbita pepo. Plant J. 103, 1548–1560 (2020). PubMed
Yang, H. et al. Gene networks orchestrated by MeGI: a single‐factor mechanism underlying sex determination in persimmon. Plant J. 98, 97–111 (2019). PubMed PMC
Natsume, S. et al. The Draft Genome of Hop (Humulus lupulus), an essence for brewing. Plant Cell Physiol. 56, 428–441 (2015). PubMed
Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 1332–1335 (2022). PubMed
Zhou, C. et al. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023). PubMed
Robinson, J. T. et al. Juicebox.js provides a cloud-based visualization system for Hi-C data. Cell Syst. 6, 256–258.e1 (2018). PubMed PMC
Simão, F. A. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015). PubMed
Flynn, J. M. et al. Repeatmodeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020). PubMed PMC
Smit, A. et al. RepeatMasker Open-4.0 (2015); http://www.repeatmasker.org
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). PubMed PMC
Schulz, M. H. et al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012). PubMed PMC
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006). PubMed
Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005). PubMed
Kim, D. et al. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015). PubMed PMC
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019). PubMed PMC
Gotoh, O. A space-efficient and accurate method for mapping and aligning cDNA sequences onto genomic sequence. Nucleic Acids Res. 36, 2630–2638 (2008). PubMed PMC
Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003). PubMed
Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).
Taniguchi, T. et al. GINGER: an integrated method for high-accuracy prediction of gene structure in higher eukaryotes at the gene and exon level. DNA Res. 30, dsad017 (2023). PubMed PMC
Miki, Y. et al. GRAS-Di system facilitates high-density genetic map construction and QTL identification in recombinant inbred lines of the wheat progenitor Aegilops tauschii. Sci. Rep. 10, 21455 (2020). PubMed PMC
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). PubMed PMC
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021). PubMed PMC
Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003). PubMed
Nishimura, K. et al. Degenerate oligonucleotide primer MIG-seq: an effective PCR-based method for high-throughput genotyping. Plant J. 118, 2296–2317 (2024). PubMed
Shirasawa, K. et al. De novo whole-genome assembly in an interspecific hybrid table grape, ‘Shine Muscat’. DNA Res. 29, dsac040 (2022). PubMed PMC
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49–e49 (2012). PubMed PMC
Henry, I. M. et al. A system for dosage-based functional genomics in poplar. Plant Cell 27, 2370–2383 (2015). PubMed PMC
Horiuchi, A. et al. Ongoing rapid evolution of a post-Y region revealed by chromosome-scale genome assembly of a hexaploid monoecious persimmon (Diospyros kaki). Mol. Biol. Evol. 40, msad151 (2023). PubMed PMC
Kumar, S. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018). PubMed PMC
Ge, S. X. et al. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020). PubMed
Urich, M. A. et al. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015). PubMed PMC
Kawakatsu, T. et al. Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat. Plants 2, 16058 (2016). PubMed PMC
Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015). PubMed PMC
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016). PubMed PMC
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Vollger, M. R. et al. StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps. Bioinformatics 38, 2049–2051 (2022). PubMed PMC
Kon, T. & Yoshikawa, N. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing. Front. Microbiol. 5, 595 (2014). PubMed PMC
Li, C. et al. Estimation of the functions of viral RNA silencing suppressors by apple latent spherical virus vector. Virus Genes 56, 67–77 (2020). PubMed
Li, C. et al. Virus-induced gene silencing and virus-induced flowering in strawberry (Fragaria × ananassa) using apple latent spherical virus vectors. Hortic. Res. 6, 18 (2019). PubMed PMC
De Rybel, B. et al. A versatile set of ligation-independent cloning vectors for functional studies in plants. Plant Physiol. 156, 1292–1299 (2011). PubMed PMC
Paul, N. et al. A comparison of the sexual expression, biomass, cannabinoid content, and seed production in XXX and XXY triploid Cannabis. Preprint at bioRxiv https://doi.org/10.1101/2024.09.25.612659 (2024).
Qiu, S. et al. RAD mapping reveals an evolving, polymorphic and fuzzy boundary of a plant pseudoautosomal region. Mol. Ecol. 25, 414–430 (2016). PubMed
Qiu, S. et al. Partial sex linkage and linkage disequilibrium on the guppy sex chromosome. Mol. Ecol. 31, 5524–5537 (2022). PubMed PMC
Dynamic patterns of repeats and retrotransposons in the centromeres of Humulus lupulus L
Contrasting pattern of subtelomeric satellites in the Cannabaceae family